Training¶
Preprocessed data
All training and sweeps expect data to be present in preprocessed form.
This means that the train_data_dir
should look like this:
train_data_dir/
├── config.toml
├── cross-val.zarr/
├── test.zarr/
├── val-test.zarr/
└── labels.geojson
With each zarr group containing a x
and y
dataarray.
Ideally, use the preprocessing functions explained below to create this structure.
Preprocess the data¶
The train, validation and test flow ist best descriped in the following image:
To split your sentinel 2 data into the three different datasets and preprocess it, you can use the following command:
PLANET data
If you are using PLANET data, you can use the following command instead:
This will create three data splits:
cross-val
, used for train and validationval-test
5% random leave-out for testing the randomness distribution shift of the datatest
leave-out region for testing the spatial distribution shift of the data
The final train data is saved to disk in form of zarr arrays with dimensions [n, c, h, w]
and [n, h, w]
for the labels respectivly, with chunksizes of n=1
.
Hence, every sample is saved in a separate chunk and therefore in a seperate file on disk, but all managed by zarr.
The preprocessing is done with the same components used in the segmentation pipeline. Hence, the same configuration options are available. In addition, this preprocessing splits larger images into smaller patches of a fixed size. Size and overlap can be configured in the configuration file or via the arguments of the CLI.
You can also use the underlying functions directly:
darts.legacy_training.preprocess_s2_train_data
¶
preprocess_s2_train_data(
*,
bands: list[str],
sentinel2_dir: pathlib.Path,
train_data_dir: pathlib.Path,
arcticdem_dir: pathlib.Path,
tcvis_dir: pathlib.Path,
admin_dir: pathlib.Path,
preprocess_cache: pathlib.Path | None = None,
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
dask_worker: int = min(
16, multiprocessing.cpu_count() - 1
),
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 16,
exclude_nopositive: bool = False,
exclude_nan: bool = True,
mask_erosion_size: int = 10,
test_val_split: float = 0.05,
test_regions: list[str] | None = None,
)
Preprocess Sentinel 2 data for training.
The data is split into a cross-validation, a validation-test and a test set:
- `cross-val` is meant to be used for train and validation
- `val-test` (5%) random leave-out for testing the randomness distribution shift of the data
- `test` leave-out region for testing the spatial distribution shift of the data
Each split is stored as a zarr group, containing a x and a y dataarray. The x dataarray contains the input data with the shape (n_patches, n_bands, patch_size, patch_size). The y dataarray contains the labels with the shape (n_patches, patch_size, patch_size). Both dataarrays are chunked along the n_patches dimension. This results in super fast random access to the data, because each sample / patch is stored in a separate chunk and therefore in a separate file.
Through the parameters test_val_split
and test_regions
, the test and validation split can be controlled.
To test_regions
can a list of admin 1 or admin 2 region names, based on the region shapefile maintained by
https://github.com/wmgeolab/geoBoundaries, be supplied to remove intersecting scenes from the dataset and
put them in the test-split.
With the test_val_split
parameter, the ratio between further splitting of a test-validation set can be controlled.
Through exclude_nopositve
and exclude_nan
, respective patches can be excluded from the final data.
Further, a config.toml
file is saved in the train_data_dir
containing the configuration used for the
preprocessing.
Addionally, a labels.geojson
file is saved in the train_data_dir
containing the joined labels geometries used
for the creation of the binarized label-masks, containing also information about the split via the mode
column.
The final directory structure of train_data_dir
will look like this:
train_data_dir/
├── config.toml
├── cross-val.zarr/
├── test.zarr/
├── val-test.zarr/
└── labels.geojson
Parameters:
-
bands
(list[str]
) –The bands to be used for training. Must be present in the preprocessing.
-
sentinel2_dir
(pathlib.Path
) –The directory containing the Sentinel 2 scenes.
-
train_data_dir
(pathlib.Path
) –The "output" directory where the tensors are written to.
-
arcticdem_dir
(pathlib.Path
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist.
-
tcvis_dir
(pathlib.Path
) –The directory containing the TCVis data.
-
admin_dir
(pathlib.Path
) –The directory containing the admin files.
-
preprocess_cache
(pathlib.Path
, default:None
) –The directory to store the preprocessed data. Defaults to None.
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
dask_worker
(int
, default:min(16, multiprocessing.cpu_count() - 1)
) –The number of Dask workers to use. Defaults to min(16, mp.cpu_count() - 1).
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:16
) –The overlap to use for inference. Defaults to 16.
-
exclude_nopositive
(bool
, default:False
) –Whether to exclude patches where the labels do not contain positives. Defaults to False.
-
exclude_nan
(bool
, default:True
) –Whether to exclude patches where the input data has nan values. Defaults to True.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
test_val_split
(float
, default:0.05
) –The split ratio for the test and validation set. Defaults to 0.05.
-
test_regions
(list[str] | str
, default:None
) –The region to use for the test set. Defaults to None.
Source code in darts/src/darts/legacy_training/preprocess/s2.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
darts.legacy_training.preprocess_planet_train_data
¶
preprocess_planet_train_data(
*,
bands: list[str],
data_dir: pathlib.Path,
labels_dir: pathlib.Path,
train_data_dir: pathlib.Path,
arcticdem_dir: pathlib.Path,
tcvis_dir: pathlib.Path,
admin_dir: pathlib.Path,
preprocess_cache: pathlib.Path | None = None,
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
dask_worker: int = min(
16, multiprocessing.cpu_count() - 1
),
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 16,
exclude_nopositive: bool = False,
exclude_nan: bool = True,
mask_erosion_size: int = 10,
test_val_split: float = 0.05,
test_regions: list[str] | None = None,
)
Preprocess Planet data for training.
The data is split into a cross-validation, a validation-test and a test set:
- `cross-val` is meant to be used for train and validation
- `val-test` (5%) random leave-out for testing the randomness distribution shift of the data
- `test` leave-out region for testing the spatial distribution shift of the data
Each split is stored as a zarr group, containing a x and a y dataarray. The x dataarray contains the input data with the shape (n_patches, n_bands, patch_size, patch_size). The y dataarray contains the labels with the shape (n_patches, patch_size, patch_size). Both dataarrays are chunked along the n_patches dimension. This results in super fast random access to the data, because each sample / patch is stored in a separate chunk and therefore in a separate file.
Through the parameters test_val_split
and test_regions
, the test and validation split can be controlled.
To test_regions
can a list of admin 1 or admin 2 region names, based on the region shapefile maintained by
https://github.com/wmgeolab/geoBoundaries, be supplied to remove intersecting scenes from the dataset and
put them in the test-split.
With the test_val_split
parameter, the ratio between further splitting of a test-validation set can be controlled.
Through exclude_nopositve
and exclude_nan
, respective patches can be excluded from the final data.
Further, a config.toml
file is saved in the train_data_dir
containing the configuration used for the
preprocessing.
Addionally, a labels.geojson
file is saved in the train_data_dir
containing the joined labels geometries used
for the creation of the binarized label-masks, containing also information about the split via the mode
column.
The final directory structure of train_data_dir
will look like this:
train_data_dir/
├── config.toml
├── cross-val.zarr/
├── test.zarr/
├── val-test.zarr/
└── labels.geojson
Parameters:
-
bands
(list[str]
) –The bands to be used for training. Must be present in the preprocessing.
-
data_dir
(pathlib.Path
) –The directory containing the Planet scenes and orthotiles.
-
labels_dir
(pathlib.Path
) –The directory containing the labels.
-
train_data_dir
(pathlib.Path
) –The "output" directory where the tensors are written to.
-
arcticdem_dir
(pathlib.Path
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist.
-
tcvis_dir
(pathlib.Path
) –The directory containing the TCVis data.
-
admin_dir
(pathlib.Path
) –The directory containing the admin files.
-
preprocess_cache
(pathlib.Path
, default:None
) –The directory to store the preprocessed data. Defaults to None.
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
dask_worker
(int
, default:min(16, multiprocessing.cpu_count() - 1)
) –The number of Dask workers to use. Defaults to min(16, mp.cpu_count() - 1).
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:16
) –The overlap to use for inference. Defaults to 16.
-
exclude_nopositive
(bool
, default:False
) –Whether to exclude patches where the labels do not contain positives. Defaults to False.
-
exclude_nan
(bool
, default:True
) –Whether to exclude patches where the input data has nan values. Defaults to True.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
test_val_split
(float
, default:0.05
) –The split ratio for the test and validation set. Defaults to 0.05.
-
test_regions
(list[str] | str
, default:None
) –The region to use for the test set. Defaults to None.
Source code in darts/src/darts/legacy_training/preprocess/planet.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
Simple SMP train and test¶
To train a simple SMP (Segmentation Model Pytorch) model you can use the command:
Configurations for the architecture and encoder can be found in the SMP documentation for model configurations.
Change defaults
Even though the defaults from the CLI are somewhat useful, it is recommended to create a config file and change the behavior of the training there.
This will train a model with the cross-val
data and save the model to disk.
You don't need to specify the concrete path to the cross-val
split, the training script expects that the --train-data-dir
points to the root directory of the splits, hence, the same path used in the preprocessing should be specified.
The training relies on PyTorch Lightning, which is a high-level interface for PyTorch.
It is recommended to use Weights and Biases (wandb) for the logging, because the training script is heavily influenced by how the organization of wandb works.
Each training run is assigned a unique name and id pair and optionally a trial name.
The name, which the user can provide, should be used as a grouping mechanism of equal hyperparameter and code.
Hence, different versions of the same name should only differ by random state or run settings parameter, like logs.
Each version is assigned a unique id.
Artifacts (metrics & checkpoints) are then stored under {artifact_dir}/{run_name}/{run_id}
in no-crossval runs.
If trial_name
is specified, the artifacts are stored under {artifact_dir}/{trial_name}/{run_name}-{run_id}
.
Wandb logs are always stored under {wandb_entity}/{wandb_project}/{run_name}
, regardless of trial_name
.
However, they are further grouped by the trial_name
(via job_type), if specified.
Both run_name
and run_id
are also stored in the hparams of each checkpoint.
You can now test the model on the other two splits (val-test
and test
) with the following command:
The checkpoint stored is not usable for the pipeline yet, since it is stored in a different format. To convert the model to a format, you need to convert is first:
You can also use the underlying functions directly:
darts.legacy_training.train_smp
¶
train_smp(
*,
train_data_dir: pathlib.Path,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
fold: int = 0,
continue_from_checkpoint: pathlib.Path | None = None,
model_arch: str = "Unet",
model_encoder: str = "dpn107",
model_encoder_weights: str | None = None,
augment: bool = True,
learning_rate: float = 0.001,
gamma: float = 0.9,
focal_loss_alpha: float | None = None,
focal_loss_gamma: float = 2.0,
batch_size: int = 8,
max_epochs: int = 100,
log_every_n_steps: int = 10,
check_val_every_n_epoch: int = 3,
early_stopping_patience: int = 5,
plot_every_n_val_epochs: int = 5,
random_seed: int = 42,
num_workers: int = 0,
device: int | str = "auto",
wandb_entity: str | None = None,
wandb_project: str | None = None,
wandb_group: str | None = None,
run_name: str | None = None,
run_id: str | None = None,
trial_name: str | None = None,
) -> pytorch_lightning.Trainer
Run the training of the SMP model.
Please see https://smp.readthedocs.io/en/latest/index.html for model configurations.
Each training run is assigned a unique name and id pair and optionally a trial name.
The name, which the user can provide, should be used as a grouping mechanism of equal hyperparameter and code.
Hence, different versions of the same name should only differ by random state or run settings parameter, like logs.
Each version is assigned a unique id.
Artifacts (metrics & checkpoints) are then stored under {artifact_dir}/{run_name}/{run_id}
in no-crossval runs.
If trial_name
is specified, the artifacts are stored under {artifact_dir}/{trial_name}/{run_name}-{run_id}
.
Wandb logs are always stored under {wandb_entity}/{wandb_project}/{run_name}
, regardless of trial_name
.
However, they are further grouped by the trial_name
(via job_type), if specified.
Both run_name
and run_id
are also stored in the hparams of each checkpoint.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- early_stopping_patience
specifies how many epochs to wait for improvement before stopping.
In epochs, this would be check_val_every_n_epoch * early_stopping_patience
.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── cross-val.zarr/ # this zarr group contains the dataarrays x and y for the training and validation
├── test.zarr/ # this zarr group contains the dataarrays x and y for the left-out-region test set
├── val-test.zarr/ # this zarr group contains the dataarrays x and y for the random selected validation set
└── labels.geojson
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory (top-level).
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Path to the training output directory. Will contain checkpoints and metrics. Defaults to Path("lightning_logs").
-
fold
(int
, default:0
) –The current fold to train on. Must be in [0, 4]. Defaults to 0.
-
continue_from_checkpoint
(pathlib.Path | None
, default:None
) –Path to a checkpoint to continue training from. Defaults to None.
-
model_arch
(str
, default:'Unet'
) –Model architecture to use. Defaults to "Unet".
-
model_encoder
(str
, default:'dpn107'
) –Encoder to use. Defaults to "dpn107".
-
model_encoder_weights
(str | None
, default:None
) –Path to the encoder weights. Defaults to None.
-
augment
(bool
, default:True
) –Weather to apply augments or not. Defaults to True.
-
learning_rate
(float
, default:0.001
) –Learning Rate. Defaults to 1e-3.
-
gamma
(float
, default:0.9
) –Multiplicative factor of learning rate decay. Defaults to 0.9.
-
focal_loss_alpha
(float
, default:None
) –Weight factor to balance positive and negative samples. Alpha must be in [0...1] range, high values will give more weight to positive class. None will not weight samples. Defaults to None.
-
focal_loss_gamma
(float
, default:2.0
) –Focal loss power factor. Defaults to 2.0.
-
batch_size
(int
, default:8
) –Batch Size. Defaults to 8.
-
max_epochs
(int
, default:100
) –Maximum number of epochs to train. Defaults to 100.
-
log_every_n_steps
(int
, default:10
) –Log every n steps. Defaults to 10.
-
check_val_every_n_epoch
(int
, default:3
) –Check validation every n epochs. Defaults to 3.
-
early_stopping_patience
(int
, default:5
) –Number of epochs to wait for improvement before stopping. Defaults to 5.
-
plot_every_n_val_epochs
(int
, default:5
) –Plot validation samples every n epochs. Defaults to 5.
-
random_seed
(int
, default:42
) –Random seed for deterministic training. Defaults to 42.
-
num_workers
(int
, default:0
) –Number of Dataloader workers. Defaults to 0.
-
device
(int | str
, default:'auto'
) –The device to run the model on. Defaults to "auto".
-
wandb_entity
(str | None
, default:None
) –Weights and Biases Entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –Weights and Biases Project. Defaults to None.
-
wandb_group
(str | None
, default:None
) –Wandb group. Usefull for CV-Sweeps. Defaults to None.
-
run_name
(str | None
, default:None
) –Name of this run, as a further grouping method for logs etc. If None, will generate a random one. Defaults to None.
-
run_id
(str | None
, default:None
) –ID of the run. If None, will generate a random one. Defaults to None.
-
trial_name
(str | None
, default:None
) –Name of the cross-validation run / trial. This effects primary logging and artifact storage. If None, will do nothing. Defaults to None.
Returns:
-
Trainer
(pytorch_lightning.Trainer
) –The trainer object used for training.
Source code in darts/src/darts/legacy_training/train.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
darts.legacy_training.test_smp
¶
test_smp(
*,
train_data_dir: pathlib.Path,
run_id: str,
run_name: str,
model_ckp: pathlib.Path | None = None,
batch_size: int = 8,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
num_workers: int = 0,
device: int | str = "auto",
wandb_entity: str | None = None,
wandb_project: str | None = None,
) -> pytorch_lightning.Trainer
Run the testing of the SMP model.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── cross-val.zarr/ # this zarr group contains the dataarrays x and y for the training and validation
├── test.zarr/ # this zarr group contains the dataarrays x and y for the left-out-region test set
├── val-test.zarr/ # this zarr group contains the dataarrays x and y for the random selected validation set
└── labels.geojson
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory (top-level).
-
run_id
(str
) –ID of the run.
-
run_name
(str
) –Name of the run.
-
model_ckp
(pathlib.Path | None
, default:None
) –Path to the model checkpoint. If None, try to find the latest checkpoint in
artifact_dir / run_name / run_id / checkpoints
. Defaults to None. -
batch_size
(int
, default:8
) –Batch size. Defaults to 8.
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Directory to save artifacts. Defaults to Path("lightning_logs").
-
num_workers
(int
, default:0
) –Number of workers for the DataLoader. Defaults to 0.
-
device
(int | str
, default:'auto'
) –Device to use. Defaults to "auto".
-
wandb_entity
(str | None
, default:None
) –WandB entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –WandB project. Defaults to None.
Returns:
-
Trainer
(pytorch_lightning.Trainer
) –The trainer object used for training.
Source code in darts/src/darts/legacy_training/test.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
darts.legacy_training.convert_lightning_checkpoint
¶
convert_lightning_checkpoint(
*,
lightning_checkpoint: pathlib.Path,
out_directory: pathlib.Path,
checkpoint_name: str,
framework: str = "smp",
)
Convert a lightning checkpoint to our own format.
The final checkpoint will contain the model configuration and the state dict. It will be saved to:
Parameters:
-
lightning_checkpoint
(pathlib.Path
) –Path to the lightning checkpoint.
-
out_directory
(pathlib.Path
) –Output directory for the converted checkpoint.
-
checkpoint_name
(str
) –A unique name of the new checkpoint.
-
framework
(str
, default:'smp'
) –The framework used for the model. Defaults to "smp".
Source code in darts/src/darts/legacy_training/util.py
Run a cross-validation hyperparameter sweep¶
Terminal Multiplexers
It is recommended to use a terminal multiplexer like tmux
, screen
or zellij
to run multiple training runs in parallel.
This way there is no need to have multiple terminal open over the span of multiple days.
To sweep over a certrain set of hyperparameters, some preparations are necessary:
- Create a sweep configuration file in YAML format. This file should contain the hyperparameters to sweep over and the search space for each hyperparameter.
- Setup a PostgreSQL database to store the results of the sweep, so we can run multiple runs in parallel with Optuna.
The sweep configuration file should look like a wandb sweep configuration. All values will be parsed and transformed to fit to an optuna sweep.
To setup the PostgreSQL database, search for an appropriate guide on how to setup a PostgreSQL database. There are many ways to do this, depending on your environment. The only important thing is that the database is reachable from the machine you are running the sweep on.
Now you can setup the sweep with the following command:
This will output some information about the sweep, especially the sweep id. In addition, it will start running trials on the CUDA:0 device.
Starting and continuing sweeps
Starting and continuing sweeps is done via the same optuna-sweep-smp
command.
Depending on the two arguments -sweep-id
and device
, the command will decide what to do.
If the sweep-id
is not specified, a new sweep will be started.
If the sweep-id
is specified, the sweep will continue from the last run.
If the device
is specified, n-trials
will be started on the specified device (sequentially).
If the device
is not specified, but sweep-id
is, then an error will be raised.
If neither device
nor sweep-id
is specified, then a new sweep will be created without starting trials.
To start a second runner, you must open a new terminal (or panel/window in a terminal multiplexer) and run the following command:
Multiple runners
You can run as many runners as you have devices available.
Each runner will start n trials sequentially, specified by n-trials
, which each request a new hyperparameter-combination from optuna.
Each trial further creates multiple runs, depending on the n_folds
and n_randoms
parameters.
This is the cross-validation part: Each trial, hence same hyperparameter-combination, is run n_folds
times with n_randoms
different random seeds.
Therefore, the total number of runs done by a runner is n-trials * n_folds * n_randoms
.
This should ensure that a single random good (or bad) run does not influence the overall result of a hyperparameter-combination.
Example config and sweep-config files¶
For better readability, the example config file uses different sub-headings which are not necessary and could be named differently or even removed.
The only important heading is the [darts]
heading, which is the root of the configuration file.
Every value which is not under a darts
top-level heading is ignored, as descriped in the Configuration Guide.
The following config.toml
expects that the labels are cloned from the ML_training_labels repository and that PLANET scenes and tiles are downloaded into the /large-storage/planet_data
directory.
The resulting file structure would look like this:
./
├── ../ML_training_labels/retrogressive_thaw_slumps/
├── darts/
├── logs/
└── configs/
├── planet-sweep-config.toml
└── planet-tcvis-sweep.yaml
/large-storage/
├── planet_data/
└── darts-nextgen/
├── artifacts/
└── data/
├── training/
│ └── planet_native_tcvis_896_partial/
├── cache/
├── datacubes/
│ ├── arcticdem/
│ └── tcvis/
└── aux/admin/
/fast-storage/
└── darts-nextgen/
└── data/
└── training/
└── planet_native_tcvis_896_partial/
[darts.wandb]
wandb-project = "darts"
wandb-entity = "your-wandb-username"
[darts.sweep]
n-trials = 100
sweep-db = "postgresql://pguser@localhost:5432/sweeps"
n_folds = 3
n_randoms = 3
sweep-id = "sweep-cv-large-planet"
[darts.training]
num-workers = 16
max-epochs = 60
log-every-n-steps = 100
check-val-every-n-epoch = 5
plot-every-n-val-epochs = 4 # == 20 epochs
early-stopping-patience = 0
# These are the default one, if not specified in the sweep-config
[darts.hyperparameters]
batch-size = 6
augment = true
[darts.training_preprocess]
ee-project = "your-ee-project"
tpi-outer-radius = 100
tpi-inner-radius = 0
bands = [
'blue',
'green',
'red',
'nir',
'ndvi',
'tc_brightness',
'tc_greenness',
'tc_wetness',
'relative_elevation',
'slope',
]
patch-size = 896
overlap = 0 # increase to 64 if exclude-nan = True
exclude-nopositive = false
exclude-nan = false
test-val-split = 0.05
test-regions = ['Taymyrsky Dolgano-Nenetsky District']
[darts.paths]
data-dir = "/large-storage/planet_data"
labels-dir = "../ML_training_labels/retrogressive_thaw_slumps" # (1)
arcticdem-dir = "/large-storage/darts-nextgen/data/datacubes/arcticdem"
tcvis-dir = "/large-storage/darts-nextgen/data/datacubes/tcvis"
admin-dir = "/large-storage/darts-nextgen/data/aux/admin"
train-data-dir = "/fast-storage/darts-nextgen/data/training/planet_native_tcvis_896_partial" # (2)
preprocess-cache = "/large-storage/darts-nextgen/data/cache"
sweep-config = "configs/planet-tcvis-sweep.yaml"
artifact-dir = "/large-storage/darts-nextgen/artifacts"
- Clone this repository to obtain the labels for the training data.
- The
train-data-dir
should point to a fast read-access storage, like a local mounted SSD to speed up the training process.
name: planet-tcvis-large
method: random
metric:
goal: maximize
name: val0/JaccardIndex
parameters:
learning_rate:
max: !!float 1e-3
min: !!float 1e-5
distribution: log_uniform_values
gamma: # How fast the learning rate will decrease
value: 0.997
focal_loss_alpha: # How much the positive class is weighted
min: 0.8
max: 0.99
focal_loss_gamma: # How much focus should be given to "bad" predictions
min: 0.0
max: 2.0
model_arch:
values:
- Unet
- MAnet
- UPerNet
- Segformer
model_encoder:
values:
- resnet50
- resnext50_32x4d
- mit_b2
- tu-convnextv2_tiny
- tu-maxvit_tiny_rw_224