darts.legacy_training¶
Legacy training module for DARTS.
Functions:
-
convert_lightning_checkpoint
–Convert a lightning checkpoint to our own format.
-
optuna_sweep_smp
–Create an optuna sweep and run it on the specified cuda device, or continue an existing sweep.
-
preprocess_planet_train_data
–Preprocess Planet data for training.
-
preprocess_s2_train_data
–Preprocess Sentinel 2 data for training.
-
test_smp
–Run the testing of the SMP model.
-
train_smp
–Run the training of the SMP model.
-
wandb_sweep_smp
–Create a sweep with wandb and run it on the specified cuda device, or continue an existing sweep.
convert_lightning_checkpoint
¶
convert_lightning_checkpoint(
*,
lightning_checkpoint: pathlib.Path,
out_directory: pathlib.Path,
checkpoint_name: str,
framework: str = "smp",
)
Convert a lightning checkpoint to our own format.
The final checkpoint will contain the model configuration and the state dict. It will be saved to:
Parameters:
-
lightning_checkpoint
(pathlib.Path
) –Path to the lightning checkpoint.
-
out_directory
(pathlib.Path
) –Output directory for the converted checkpoint.
-
checkpoint_name
(str
) –A unique name of the new checkpoint.
-
framework
(str
, default:'smp'
) –The framework used for the model. Defaults to "smp".
Source code in darts/src/darts/legacy_training/util.py
optuna_sweep_smp
¶
optuna_sweep_smp(
*,
train_data_dir: pathlib.Path,
sweep_config: pathlib.Path,
n_trials: int = 10,
sweep_db: str | None = None,
sweep_id: str | None = None,
n_folds: int = 5,
n_randoms: int = 3,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
max_epochs: int = 100,
log_every_n_steps: int = 10,
check_val_every_n_epoch: int = 3,
plot_every_n_val_epochs: int = 5,
num_workers: int = 0,
device: int | str | None = None,
wandb_entity: str | None = None,
wandb_project: str | None = None,
model_arch: str = "Unet",
model_encoder: str = "dpn107",
augment: bool = True,
learning_rate: float = 0.001,
gamma: float = 0.9,
focal_loss_alpha: float | None = None,
focal_loss_gamma: float = 2.0,
batch_size: int = 8,
)
Create an optuna sweep and run it on the specified cuda device, or continue an existing sweep.
If sweep_id
already exists in sweep_db
, the sweep will be continued. Otherwise, a new sweep will be created.
If a cuda_device
is specified, run an agent on this device. If None, do nothing.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
This will use cross-validation.
Example
In one terminal, start a sweep:
$ rye run darts sweep-smp --config-file /path/to/sweep-config.toml
... # Many logs
Created sweep with ID 123456789
... # More logs from spawned agent
In another terminal, start an a second agent:
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory.
-
sweep_config
(pathlib.Path
) –Path to the sweep yaml configuration file. Must contain a valid wandb sweep configuration. Hyperparameters must contain the following fields:
model_arch
,model_encoder
,augment
,gamma
,batch_size
. Please read https://docs.wandb.ai/guides/sweeps/sweep-config-keys for more information. -
n_trials
(int
, default:10
) –Number of runs to execute. Defaults to 10.
-
sweep_db
(str | None
, default:None
) –Path to the optuna database. If None, a new database will be created.
-
sweep_id
(str | None
, default:None
) –The ID of the sweep. If None, a new sweep will be created. Defaults to None.
-
n_folds
((int, optinoal)
, default:5
) –Number of folds in cross-validation. Max 5. Defaults to 5.
-
n_randoms
(int
, default:3
) –Number of repetitions with different random-seeds. First 3 are always "42", "21" and "69" for better default comparibility with rest of this pipeline. Rest are pseudo-random generated beforehand, hence always equal. Defaults to 5.
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Path to the training output directory. Will contain checkpoints and metrics. Defaults to Path("lightning_logs").
-
max_epochs
(int
, default:100
) –Maximum number of epochs to train. Defaults to 100.
-
log_every_n_steps
(int
, default:10
) –Log every n steps. Defaults to 10.
-
check_val_every_n_epoch
(int
, default:3
) –Check validation every n epochs. Defaults to 3.
-
plot_every_n_val_epochs
(int
, default:5
) –Plot validation samples every n epochs. Defaults to 5.
-
num_workers
(int
, default:0
) –Number of Dataloader workers. Defaults to 0.
-
device
(int | str | None
, default:None
) –The device to run the model on. Defaults to None.
-
wandb_entity
(str | None
, default:None
) –Weights and Biases Entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –Weights and Biases Project. Defaults to None.
-
model_arch
(str
, default:'Unet'
) –Model architecture to use. Defaults to "Unet".
-
model_encoder
(str
, default:'dpn107'
) –Encoder to use. Defaults to "dpn107".
-
augment
(bool
, default:True
) –Weather to apply augments or not. Defaults to True.
-
learning_rate
(float
, default:0.001
) –Learning Rate. Defaults to 1e-3.
-
gamma
(float
, default:0.9
) –Multiplicative factor of learning rate decay. Defaults to 0.9.
-
focal_loss_alpha
(float
, default:None
) –Weight factor to balance positive and negative samples. Alpha must be in [0...1] range, high values will give more weight to positive class. None will not weight samples. Defaults to None.
-
focal_loss_gamma
(float
, default:2.0
) –Focal loss power factor. Defaults to 2.0.
-
batch_size
(int
, default:8
) –Batch Size. Defaults to 8.
Source code in darts/src/darts/legacy_training/sweep.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
|
preprocess_planet_train_data
¶
preprocess_planet_train_data(
*,
bands: list[str],
data_dir: pathlib.Path,
labels_dir: pathlib.Path,
train_data_dir: pathlib.Path,
arcticdem_dir: pathlib.Path,
tcvis_dir: pathlib.Path,
admin_dir: pathlib.Path,
preprocess_cache: pathlib.Path | None = None,
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
dask_worker: int = min(
16, multiprocessing.cpu_count() - 1
),
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 16,
exclude_nopositive: bool = False,
exclude_nan: bool = True,
mask_erosion_size: int = 10,
test_val_split: float = 0.05,
test_regions: list[str] | None = None,
)
Preprocess Planet data for training.
The data is split into a cross-validation, a validation-test and a test set:
- `cross-val` is meant to be used for train and validation
- `val-test` (5%) random leave-out for testing the randomness distribution shift of the data
- `test` leave-out region for testing the spatial distribution shift of the data
Each split is stored as a zarr group, containing a x and a y dataarray. The x dataarray contains the input data with the shape (n_patches, n_bands, patch_size, patch_size). The y dataarray contains the labels with the shape (n_patches, patch_size, patch_size). Both dataarrays are chunked along the n_patches dimension. This results in super fast random access to the data, because each sample / patch is stored in a separate chunk and therefore in a separate file.
Through the parameters test_val_split
and test_regions
, the test and validation split can be controlled.
To test_regions
can a list of admin 1 or admin 2 region names, based on the region shapefile maintained by
https://github.com/wmgeolab/geoBoundaries, be supplied to remove intersecting scenes from the dataset and
put them in the test-split.
With the test_val_split
parameter, the ratio between further splitting of a test-validation set can be controlled.
Through exclude_nopositve
and exclude_nan
, respective patches can be excluded from the final data.
Further, a config.toml
file is saved in the train_data_dir
containing the configuration used for the
preprocessing.
Addionally, a labels.geojson
file is saved in the train_data_dir
containing the joined labels geometries used
for the creation of the binarized label-masks, containing also information about the split via the mode
column.
The final directory structure of train_data_dir
will look like this:
train_data_dir/
├── config.toml
├── cross-val.zarr/
├── test.zarr/
├── val-test.zarr/
└── labels.geojson
Parameters:
-
bands
(list[str]
) –The bands to be used for training. Must be present in the preprocessing.
-
data_dir
(pathlib.Path
) –The directory containing the Planet scenes and orthotiles.
-
labels_dir
(pathlib.Path
) –The directory containing the labels.
-
train_data_dir
(pathlib.Path
) –The "output" directory where the tensors are written to.
-
arcticdem_dir
(pathlib.Path
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist.
-
tcvis_dir
(pathlib.Path
) –The directory containing the TCVis data.
-
admin_dir
(pathlib.Path
) –The directory containing the admin files.
-
preprocess_cache
(pathlib.Path
, default:None
) –The directory to store the preprocessed data. Defaults to None.
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
dask_worker
(int
, default:min(16, multiprocessing.cpu_count() - 1)
) –The number of Dask workers to use. Defaults to min(16, mp.cpu_count() - 1).
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:16
) –The overlap to use for inference. Defaults to 16.
-
exclude_nopositive
(bool
, default:False
) –Whether to exclude patches where the labels do not contain positives. Defaults to False.
-
exclude_nan
(bool
, default:True
) –Whether to exclude patches where the input data has nan values. Defaults to True.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
test_val_split
(float
, default:0.05
) –The split ratio for the test and validation set. Defaults to 0.05.
-
test_regions
(list[str] | str
, default:None
) –The region to use for the test set. Defaults to None.
Source code in darts/src/darts/legacy_training/preprocess/planet.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
preprocess_s2_train_data
¶
preprocess_s2_train_data(
*,
bands: list[str],
sentinel2_dir: pathlib.Path,
train_data_dir: pathlib.Path,
arcticdem_dir: pathlib.Path,
tcvis_dir: pathlib.Path,
admin_dir: pathlib.Path,
preprocess_cache: pathlib.Path | None = None,
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
dask_worker: int = min(
16, multiprocessing.cpu_count() - 1
),
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 16,
exclude_nopositive: bool = False,
exclude_nan: bool = True,
mask_erosion_size: int = 10,
test_val_split: float = 0.05,
test_regions: list[str] | None = None,
)
Preprocess Sentinel 2 data for training.
The data is split into a cross-validation, a validation-test and a test set:
- `cross-val` is meant to be used for train and validation
- `val-test` (5%) random leave-out for testing the randomness distribution shift of the data
- `test` leave-out region for testing the spatial distribution shift of the data
Each split is stored as a zarr group, containing a x and a y dataarray. The x dataarray contains the input data with the shape (n_patches, n_bands, patch_size, patch_size). The y dataarray contains the labels with the shape (n_patches, patch_size, patch_size). Both dataarrays are chunked along the n_patches dimension. This results in super fast random access to the data, because each sample / patch is stored in a separate chunk and therefore in a separate file.
Through the parameters test_val_split
and test_regions
, the test and validation split can be controlled.
To test_regions
can a list of admin 1 or admin 2 region names, based on the region shapefile maintained by
https://github.com/wmgeolab/geoBoundaries, be supplied to remove intersecting scenes from the dataset and
put them in the test-split.
With the test_val_split
parameter, the ratio between further splitting of a test-validation set can be controlled.
Through exclude_nopositve
and exclude_nan
, respective patches can be excluded from the final data.
Further, a config.toml
file is saved in the train_data_dir
containing the configuration used for the
preprocessing.
Addionally, a labels.geojson
file is saved in the train_data_dir
containing the joined labels geometries used
for the creation of the binarized label-masks, containing also information about the split via the mode
column.
The final directory structure of train_data_dir
will look like this:
train_data_dir/
├── config.toml
├── cross-val.zarr/
├── test.zarr/
├── val-test.zarr/
└── labels.geojson
Parameters:
-
bands
(list[str]
) –The bands to be used for training. Must be present in the preprocessing.
-
sentinel2_dir
(pathlib.Path
) –The directory containing the Sentinel 2 scenes.
-
train_data_dir
(pathlib.Path
) –The "output" directory where the tensors are written to.
-
arcticdem_dir
(pathlib.Path
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist.
-
tcvis_dir
(pathlib.Path
) –The directory containing the TCVis data.
-
admin_dir
(pathlib.Path
) –The directory containing the admin files.
-
preprocess_cache
(pathlib.Path
, default:None
) –The directory to store the preprocessed data. Defaults to None.
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
dask_worker
(int
, default:min(16, multiprocessing.cpu_count() - 1)
) –The number of Dask workers to use. Defaults to min(16, mp.cpu_count() - 1).
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:16
) –The overlap to use for inference. Defaults to 16.
-
exclude_nopositive
(bool
, default:False
) –Whether to exclude patches where the labels do not contain positives. Defaults to False.
-
exclude_nan
(bool
, default:True
) –Whether to exclude patches where the input data has nan values. Defaults to True.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
test_val_split
(float
, default:0.05
) –The split ratio for the test and validation set. Defaults to 0.05.
-
test_regions
(list[str] | str
, default:None
) –The region to use for the test set. Defaults to None.
Source code in darts/src/darts/legacy_training/preprocess/s2.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
test_smp
¶
test_smp(
*,
train_data_dir: pathlib.Path,
run_id: str,
run_name: str,
model_ckp: pathlib.Path | None = None,
batch_size: int = 8,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
num_workers: int = 0,
device: int | str = "auto",
wandb_entity: str | None = None,
wandb_project: str | None = None,
) -> pytorch_lightning.Trainer
Run the testing of the SMP model.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── cross-val.zarr/ # this zarr group contains the dataarrays x and y for the training and validation
├── test.zarr/ # this zarr group contains the dataarrays x and y for the left-out-region test set
├── val-test.zarr/ # this zarr group contains the dataarrays x and y for the random selected validation set
└── labels.geojson
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory (top-level).
-
run_id
(str
) –ID of the run.
-
run_name
(str
) –Name of the run.
-
model_ckp
(pathlib.Path | None
, default:None
) –Path to the model checkpoint. If None, try to find the latest checkpoint in
artifact_dir / run_name / run_id / checkpoints
. Defaults to None. -
batch_size
(int
, default:8
) –Batch size. Defaults to 8.
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Directory to save artifacts. Defaults to Path("lightning_logs").
-
num_workers
(int
, default:0
) –Number of workers for the DataLoader. Defaults to 0.
-
device
(int | str
, default:'auto'
) –Device to use. Defaults to "auto".
-
wandb_entity
(str | None
, default:None
) –WandB entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –WandB project. Defaults to None.
Returns:
-
Trainer
(pytorch_lightning.Trainer
) –The trainer object used for training.
Source code in darts/src/darts/legacy_training/test.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
train_smp
¶
train_smp(
*,
train_data_dir: pathlib.Path,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
fold: int = 0,
continue_from_checkpoint: pathlib.Path | None = None,
model_arch: str = "Unet",
model_encoder: str = "dpn107",
model_encoder_weights: str | None = None,
augment: bool = True,
learning_rate: float = 0.001,
gamma: float = 0.9,
focal_loss_alpha: float | None = None,
focal_loss_gamma: float = 2.0,
batch_size: int = 8,
max_epochs: int = 100,
log_every_n_steps: int = 10,
check_val_every_n_epoch: int = 3,
early_stopping_patience: int = 5,
plot_every_n_val_epochs: int = 5,
random_seed: int = 42,
num_workers: int = 0,
device: int | str = "auto",
wandb_entity: str | None = None,
wandb_project: str | None = None,
wandb_group: str | None = None,
run_name: str | None = None,
run_id: str | None = None,
trial_name: str | None = None,
) -> pytorch_lightning.Trainer
Run the training of the SMP model.
Please see https://smp.readthedocs.io/en/latest/index.html for model configurations.
Each training run is assigned a unique name and id pair and optionally a trial name.
The name, which the user can provide, should be used as a grouping mechanism of equal hyperparameter and code.
Hence, different versions of the same name should only differ by random state or run settings parameter, like logs.
Each version is assigned a unique id.
Artifacts (metrics & checkpoints) are then stored under {artifact_dir}/{run_name}/{run_id}
in no-crossval runs.
If trial_name
is specified, the artifacts are stored under {artifact_dir}/{trial_name}/{run_name}-{run_id}
.
Wandb logs are always stored under {wandb_entity}/{wandb_project}/{run_name}
, regardless of trial_name
.
However, they are further grouped by the trial_name
(via job_type), if specified.
Both run_name
and run_id
are also stored in the hparams of each checkpoint.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- early_stopping_patience
specifies how many epochs to wait for improvement before stopping.
In epochs, this would be check_val_every_n_epoch * early_stopping_patience
.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── cross-val.zarr/ # this zarr group contains the dataarrays x and y for the training and validation
├── test.zarr/ # this zarr group contains the dataarrays x and y for the left-out-region test set
├── val-test.zarr/ # this zarr group contains the dataarrays x and y for the random selected validation set
└── labels.geojson
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory (top-level).
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Path to the training output directory. Will contain checkpoints and metrics. Defaults to Path("lightning_logs").
-
fold
(int
, default:0
) –The current fold to train on. Must be in [0, 4]. Defaults to 0.
-
continue_from_checkpoint
(pathlib.Path | None
, default:None
) –Path to a checkpoint to continue training from. Defaults to None.
-
model_arch
(str
, default:'Unet'
) –Model architecture to use. Defaults to "Unet".
-
model_encoder
(str
, default:'dpn107'
) –Encoder to use. Defaults to "dpn107".
-
model_encoder_weights
(str | None
, default:None
) –Path to the encoder weights. Defaults to None.
-
augment
(bool
, default:True
) –Weather to apply augments or not. Defaults to True.
-
learning_rate
(float
, default:0.001
) –Learning Rate. Defaults to 1e-3.
-
gamma
(float
, default:0.9
) –Multiplicative factor of learning rate decay. Defaults to 0.9.
-
focal_loss_alpha
(float
, default:None
) –Weight factor to balance positive and negative samples. Alpha must be in [0...1] range, high values will give more weight to positive class. None will not weight samples. Defaults to None.
-
focal_loss_gamma
(float
, default:2.0
) –Focal loss power factor. Defaults to 2.0.
-
batch_size
(int
, default:8
) –Batch Size. Defaults to 8.
-
max_epochs
(int
, default:100
) –Maximum number of epochs to train. Defaults to 100.
-
log_every_n_steps
(int
, default:10
) –Log every n steps. Defaults to 10.
-
check_val_every_n_epoch
(int
, default:3
) –Check validation every n epochs. Defaults to 3.
-
early_stopping_patience
(int
, default:5
) –Number of epochs to wait for improvement before stopping. Defaults to 5.
-
plot_every_n_val_epochs
(int
, default:5
) –Plot validation samples every n epochs. Defaults to 5.
-
random_seed
(int
, default:42
) –Random seed for deterministic training. Defaults to 42.
-
num_workers
(int
, default:0
) –Number of Dataloader workers. Defaults to 0.
-
device
(int | str
, default:'auto'
) –The device to run the model on. Defaults to "auto".
-
wandb_entity
(str | None
, default:None
) –Weights and Biases Entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –Weights and Biases Project. Defaults to None.
-
wandb_group
(str | None
, default:None
) –Wandb group. Usefull for CV-Sweeps. Defaults to None.
-
run_name
(str | None
, default:None
) –Name of this run, as a further grouping method for logs etc. If None, will generate a random one. Defaults to None.
-
run_id
(str | None
, default:None
) –ID of the run. If None, will generate a random one. Defaults to None.
-
trial_name
(str | None
, default:None
) –Name of the cross-validation run / trial. This effects primary logging and artifact storage. If None, will do nothing. Defaults to None.
Returns:
-
Trainer
(pytorch_lightning.Trainer
) –The trainer object used for training.
Source code in darts/src/darts/legacy_training/train.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
wandb_sweep_smp
¶
wandb_sweep_smp(
*,
train_data_dir: pathlib.Path,
sweep_config: pathlib.Path,
n_trials: int = 10,
sweep_id: str | None = None,
artifact_dir: pathlib.Path = pathlib.Path(
"lightning_logs"
),
max_epochs: int = 100,
log_every_n_steps: int = 10,
check_val_every_n_epoch: int = 3,
plot_every_n_val_epochs: int = 5,
num_workers: int = 0,
device: int | str | None = None,
wandb_entity: str | None = None,
wandb_project: str | None = None,
)
Create a sweep with wandb and run it on the specified cuda device, or continue an existing sweep.
If sweep_id
is None, a new sweep will be created. Otherwise, the sweep with the given ID will be continued.
All artifacts are gathered under nested directory based on the sweep id: {artifact_dir}/sweep-{sweep_id}.
Since each sweep-configuration has (currently) an own name and id, a single run can be found under:
{artifact_dir}/sweep-{sweep_id}/{run_name}/{run_id}. Read the training-docs for more info.
If a cuda_device
is specified, run an agent on this device. If None, do nothing.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
This will NOT use cross-validation. For cross-validation, use optuna_sweep_smp
.
Example
In one terminal, start a sweep:
$ rye run darts wandb-sweep-smp --config-file /path/to/sweep-config.toml
... # Many logs
Created sweep with ID 123456789
... # More logs from spawned agent
In another terminal, start an a second agent:
Parameters:
-
train_data_dir
(pathlib.Path
) –Path to the training data directory.
-
sweep_config
(pathlib.Path
) –Path to the sweep yaml configuration file. Must contain a valid wandb sweep configuration. Hyperparameters must contain the following fields:
model_arch
,model_encoder
,augment
,gamma
,batch_size
. Please read https://docs.wandb.ai/guides/sweeps/sweep-config-keys for more information. -
n_trials
(int
, default:10
) –Number of runs to execute. Defaults to 10.
-
sweep_id
(str | None
, default:None
) –The ID of the sweep. If None, a new sweep will be created. Defaults to None.
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('lightning_logs')
) –Path to the training output directory. Will contain checkpoints and metrics. Defaults to Path("lightning_logs").
-
max_epochs
(int
, default:100
) –Maximum number of epochs to train. Defaults to 100.
-
log_every_n_steps
(int
, default:10
) –Log every n steps. Defaults to 10.
-
check_val_every_n_epoch
(int
, default:3
) –Check validation every n epochs. Defaults to 3.
-
plot_every_n_val_epochs
(int
, default:5
) –Plot validation samples every n epochs. Defaults to 5.
-
num_workers
(int
, default:0
) –Number of Dataloader workers. Defaults to 0.
-
device
(int | str | None
, default:None
) –The device to run the model on. Defaults to None.
-
wandb_entity
(str | None
, default:None
) –Weights and Biases Entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –Weights and Biases Project. Defaults to None.
Source code in darts/src/darts/legacy_training/train.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|