darts.pipelines¶
Predefined pipelines for DARTS.
Classes:
-
AOISentinel2Pipeline
–Pipeline for Sentinel 2 data based on an area of interest.
-
PlanetPipeline
–Pipeline for PlanetScope data.
-
Sentinel2Pipeline
–Pipeline for Sentinel 2 data.
AOISentinel2Pipeline
dataclass
¶
AOISentinel2Pipeline(
model_files: list[pathlib.Path] = None,
output_data_dir: pathlib.Path = pathlib.Path(
"data/output"
),
arcticdem_dir: pathlib.Path = pathlib.Path(
"data/download/arcticdem"
),
tcvis_dir: pathlib.Path = pathlib.Path(
"data/download/tcvis"
),
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 256,
batch_size: int = 8,
reflection: int = 0,
binarization_threshold: float = 0.5,
mask_erosion_size: int = 10,
min_object_size: int = 32,
quality_level: int
| typing.Literal[
"high_quality", "low_quality", "none"
] = 1,
export_bands: list[str] = lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
](),
write_model_outputs: bool = False,
overwrite: bool = False,
aoi_shapefile: pathlib.Path = None,
start_date: str = None,
end_date: str = None,
max_cloud_cover: int = 10,
input_cache: pathlib.Path = pathlib.Path(
"data/cache/input"
),
)
Bases: darts.pipelines.sequential_v2._BasePipeline
Pipeline for Sentinel 2 data based on an area of interest.
Parameters:
-
aoi_shapefile
(pathlib.Path
, default:None
) –The shapefile containing the area of interest.
-
start_date
(str
, default:None
) –The start date of the time series in YYYY-MM-DD format.
-
end_date
(str
, default:None
) –The end date of the time series in YYYY-MM-DD format.
-
max_cloud_cover
(int
, default:10
) –The maximum cloud cover percentage to use for filtering the Sentinel 2 scenes. Defaults to 10.
-
input_cache
(pathlib.Path
, default:pathlib.Path('data/cache/input')
) –The directory to use for caching the input data. Defaults to Path("data/cache/input").
-
model_files
(pathlib.Path | list[pathlib.Path]
, default:None
) –The path to the models to use for segmentation. Can also be a single Path to only use one model. This implies
write_model_outputs=False
If a list is provided, will use an ensemble of the models. -
output_data_dir
(pathlib.Path
, default:pathlib.Path('data/output')
) –The "output" directory. Defaults to Path("data/output").
-
arcticdem_dir
(pathlib.Path
, default:pathlib.Path('data/download/arcticdem')
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist. Defaults to Path("data/download/arcticdem").
-
tcvis_dir
(pathlib.Path
, default:pathlib.Path('data/download/tcvis')
) –The directory containing the TCVis data. Defaults to Path("data/download/tcvis").
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:256
) –The overlap to use for inference. Defaults to 16.
-
batch_size
(int
, default:8
) –The batch size to use for inference. Defaults to 8.
-
reflection
(int
, default:0
) –The reflection padding to use for inference. Defaults to 0.
-
binarization_threshold
(float
, default:0.5
) –The threshold to binarize the probabilities. Defaults to 0.5.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
min_object_size
(int
, default:32
) –The minimum object size to keep in pixel. Defaults to 32.
-
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
, default:1
) –The quality level to use for the segmentation. Can also be an int. In this case 0="none" 1="low_quality" 2="high_quality". Defaults to 1.
-
export_bands
(list[str]
, default:lambda: ['probabilities', 'binarized', 'polygonized', 'extent', 'thumbnail']()
) –The bands to export. Can be a list of "probabilities", "binarized", "polygonized", "extent", "thumbnail", "optical", "dem", "tcvis" or concrete band-names. Defaults to ["probabilities", "binarized", "polygonized", "extent", "thumbnail"].
-
write_model_outputs
(bool
, default:False
) –Also save the model outputs, not only the ensemble result. Defaults to False.
-
overwrite
(bool
, default:False
) –Whether to overwrite existing files. Defaults to False.
Methods:
Attributes:
-
aoi_shapefile
(pathlib.Path
) – -
arcticdem_dir
(pathlib.Path
) – -
batch_size
(int
) – -
binarization_threshold
(float
) – -
device
(typing.Literal['cuda', 'cpu', 'auto'] | int | None
) – -
ee_project
(str | None
) – -
ee_use_highvolume
(bool
) – -
end_date
(str
) – -
export_bands
(list[str]
) – -
input_cache
(pathlib.Path
) – -
mask_erosion_size
(int
) – -
max_cloud_cover
(int
) – -
min_object_size
(int
) – -
model_files
(list[pathlib.Path]
) – -
output_data_dir
(pathlib.Path
) – -
overlap
(int
) – -
overwrite
(bool
) – -
patch_size
(int
) – -
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
) – -
reflection
(int
) – -
start_date
(str
) – -
tcvis_dir
(pathlib.Path
) – -
tpi_inner_radius
(int
) – -
tpi_outer_radius
(int
) – -
write_model_outputs
(bool
) –
arcticdem_dir
class-attribute
instance-attribute
¶
device
class-attribute
instance-attribute
¶
export_bands
class-attribute
instance-attribute
¶
export_bands: list[str] = dataclasses.field(
default_factory=lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
]
)
input_cache
class-attribute
instance-attribute
¶
output_data_dir
class-attribute
instance-attribute
¶
quality_level
class-attribute
instance-attribute
¶
tcvis_dir
class-attribute
instance-attribute
¶
cli
staticmethod
¶
cli(
*,
pipeline: darts.pipelines.sequential_v2.AOISentinel2Pipeline,
)
run
¶
Source code in darts/src/darts/pipelines/sequential_v2.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
PlanetPipeline
dataclass
¶
PlanetPipeline(
model_files: list[pathlib.Path] = None,
output_data_dir: pathlib.Path = pathlib.Path(
"data/output"
),
arcticdem_dir: pathlib.Path = pathlib.Path(
"data/download/arcticdem"
),
tcvis_dir: pathlib.Path = pathlib.Path(
"data/download/tcvis"
),
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 256,
batch_size: int = 8,
reflection: int = 0,
binarization_threshold: float = 0.5,
mask_erosion_size: int = 10,
min_object_size: int = 32,
quality_level: int
| typing.Literal[
"high_quality", "low_quality", "none"
] = 1,
export_bands: list[str] = lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
](),
write_model_outputs: bool = False,
overwrite: bool = False,
orthotiles_dir: pathlib.Path = pathlib.Path(
"data/input/planet/PSOrthoTile"
),
scenes_dir: pathlib.Path = pathlib.Path(
"data/input/planet/PSScene"
),
image_ids: list = None,
)
Bases: darts.pipelines.sequential_v2._BasePipeline
Pipeline for PlanetScope data.
Parameters:
-
orthotiles_dir
(pathlib.Path
, default:pathlib.Path('data/input/planet/PSOrthoTile')
) –The directory containing the PlanetScope orthotiles.
-
scenes_dir
(pathlib.Path
, default:pathlib.Path('data/input/planet/PSScene')
) –The directory containing the PlanetScope scenes.
-
image_ids
(list
, default:None
) –The list of image ids to process. If None, all images in the directory will be processed.
-
model_files
(pathlib.Path | list[pathlib.Path]
, default:None
) –The path to the models to use for segmentation. Can also be a single Path to only use one model. This implies
write_model_outputs=False
If a list is provided, will use an ensemble of the models. -
output_data_dir
(pathlib.Path
, default:pathlib.Path('data/output')
) –The "output" directory. Defaults to Path("data/output").
-
arcticdem_dir
(pathlib.Path
, default:pathlib.Path('data/download/arcticdem')
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist. Defaults to Path("data/download/arcticdem").
-
tcvis_dir
(pathlib.Path
, default:pathlib.Path('data/download/tcvis')
) –The directory containing the TCVis data. Defaults to Path("data/download/tcvis").
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:256
) –The overlap to use for inference. Defaults to 16.
-
batch_size
(int
, default:8
) –The batch size to use for inference. Defaults to 8.
-
reflection
(int
, default:0
) –The reflection padding to use for inference. Defaults to 0.
-
binarization_threshold
(float
, default:0.5
) –The threshold to binarize the probabilities. Defaults to 0.5.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
min_object_size
(int
, default:32
) –The minimum object size to keep in pixel. Defaults to 32.
-
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
, default:1
) –The quality level to use for the segmentation. Can also be an int. In this case 0="none" 1="low_quality" 2="high_quality". Defaults to 1.
-
export_bands
(list[str]
, default:lambda: ['probabilities', 'binarized', 'polygonized', 'extent', 'thumbnail']()
) –The bands to export. Can be a list of "probabilities", "binarized", "polygonized", "extent", "thumbnail", "optical", "dem", "tcvis" or concrete band-names. Defaults to ["probabilities", "binarized", "polygonized", "extent", "thumbnail"].
-
write_model_outputs
(bool
, default:False
) –Also save the model outputs, not only the ensemble result. Defaults to False.
-
overwrite
(bool
, default:False
) –Whether to overwrite existing files. Defaults to False.
Methods:
Attributes:
-
arcticdem_dir
(pathlib.Path
) – -
batch_size
(int
) – -
binarization_threshold
(float
) – -
device
(typing.Literal['cuda', 'cpu', 'auto'] | int | None
) – -
ee_project
(str | None
) – -
ee_use_highvolume
(bool
) – -
export_bands
(list[str]
) – -
image_ids
(list
) – -
mask_erosion_size
(int
) – -
min_object_size
(int
) – -
model_files
(list[pathlib.Path]
) – -
orthotiles_dir
(pathlib.Path
) – -
output_data_dir
(pathlib.Path
) – -
overlap
(int
) – -
overwrite
(bool
) – -
patch_size
(int
) – -
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
) – -
reflection
(int
) – -
scenes_dir
(pathlib.Path
) – -
tcvis_dir
(pathlib.Path
) – -
tpi_inner_radius
(int
) – -
tpi_outer_radius
(int
) – -
write_model_outputs
(bool
) –
arcticdem_dir
class-attribute
instance-attribute
¶
device
class-attribute
instance-attribute
¶
export_bands
class-attribute
instance-attribute
¶
export_bands: list[str] = dataclasses.field(
default_factory=lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
]
)
orthotiles_dir
class-attribute
instance-attribute
¶
output_data_dir
class-attribute
instance-attribute
¶
quality_level
class-attribute
instance-attribute
¶
scenes_dir
class-attribute
instance-attribute
¶
tcvis_dir
class-attribute
instance-attribute
¶
cli
staticmethod
¶
cli(
*,
pipeline: darts.pipelines.sequential_v2.PlanetPipeline,
)
run
¶
Source code in darts/src/darts/pipelines/sequential_v2.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
Sentinel2Pipeline
dataclass
¶
Sentinel2Pipeline(
model_files: list[pathlib.Path] = None,
output_data_dir: pathlib.Path = pathlib.Path(
"data/output"
),
arcticdem_dir: pathlib.Path = pathlib.Path(
"data/download/arcticdem"
),
tcvis_dir: pathlib.Path = pathlib.Path(
"data/download/tcvis"
),
device: typing.Literal["cuda", "cpu", "auto"]
| int
| None = None,
ee_project: str | None = None,
ee_use_highvolume: bool = True,
tpi_outer_radius: int = 100,
tpi_inner_radius: int = 0,
patch_size: int = 1024,
overlap: int = 256,
batch_size: int = 8,
reflection: int = 0,
binarization_threshold: float = 0.5,
mask_erosion_size: int = 10,
min_object_size: int = 32,
quality_level: int
| typing.Literal[
"high_quality", "low_quality", "none"
] = 1,
export_bands: list[str] = lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
](),
write_model_outputs: bool = False,
overwrite: bool = False,
sentinel2_dir: pathlib.Path = pathlib.Path(
"data/input/sentinel2"
),
image_ids: list = None,
)
Bases: darts.pipelines.sequential_v2._BasePipeline
Pipeline for Sentinel 2 data.
Parameters:
-
sentinel2_dir
(pathlib.Path
, default:pathlib.Path('data/input/sentinel2')
) –The directory containing the Sentinel 2 scenes. Defaults to Path("data/input/sentinel2").
-
image_ids
(list
, default:None
) –The list of image ids to process. If None, all images in the directory will be processed. Defaults to None.
-
model_files
(pathlib.Path | list[pathlib.Path]
, default:None
) –The path to the models to use for segmentation. Can also be a single Path to only use one model. This implies
write_model_outputs=False
If a list is provided, will use an ensemble of the models. -
output_data_dir
(pathlib.Path
, default:pathlib.Path('data/output')
) –The "output" directory. Defaults to Path("data/output").
-
arcticdem_dir
(pathlib.Path
, default:pathlib.Path('data/download/arcticdem')
) –The directory containing the ArcticDEM data (the datacube and the extent files). Will be created and downloaded if it does not exist. Defaults to Path("data/download/arcticdem").
-
tcvis_dir
(pathlib.Path
, default:pathlib.Path('data/download/tcvis')
) –The directory containing the TCVis data. Defaults to Path("data/download/tcvis").
-
device
(typing.Literal['cuda', 'cpu'] | int
, default:None
) –The device to run the model on. If "cuda" take the first device (0), if int take the specified device. If "auto" try to automatically select a free GPU (<50% memory usage). Defaults to "cuda" if available, else "cpu".
-
ee_project
(str
, default:None
) –The Earth Engine project ID or number to use. May be omitted if project is defined within persistent API credentials obtained via
earthengine authenticate
. -
ee_use_highvolume
(bool
, default:True
) –Whether to use the high volume server (https://earthengine-highvolume.googleapis.com).
-
tpi_outer_radius
(int
, default:100
) –The outer radius of the annulus kernel for the tpi calculation in m. Defaults to 100m.
-
tpi_inner_radius
(int
, default:0
) –The inner radius of the annulus kernel for the tpi calculation in m. Defaults to 0.
-
patch_size
(int
, default:1024
) –The patch size to use for inference. Defaults to 1024.
-
overlap
(int
, default:256
) –The overlap to use for inference. Defaults to 16.
-
batch_size
(int
, default:8
) –The batch size to use for inference. Defaults to 8.
-
reflection
(int
, default:0
) –The reflection padding to use for inference. Defaults to 0.
-
binarization_threshold
(float
, default:0.5
) –The threshold to binarize the probabilities. Defaults to 0.5.
-
mask_erosion_size
(int
, default:10
) –The size of the disk to use for mask erosion and the edge-cropping. Defaults to 10.
-
min_object_size
(int
, default:32
) –The minimum object size to keep in pixel. Defaults to 32.
-
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
, default:1
) –The quality level to use for the segmentation. Can also be an int. In this case 0="none" 1="low_quality" 2="high_quality". Defaults to 1.
-
export_bands
(list[str]
, default:lambda: ['probabilities', 'binarized', 'polygonized', 'extent', 'thumbnail']()
) –The bands to export. Can be a list of "probabilities", "binarized", "polygonized", "extent", "thumbnail", "optical", "dem", "tcvis" or concrete band-names. Defaults to ["probabilities", "binarized", "polygonized", "extent", "thumbnail"].
-
write_model_outputs
(bool
, default:False
) –Also save the model outputs, not only the ensemble result. Defaults to False.
-
overwrite
(bool
, default:False
) –Whether to overwrite existing files. Defaults to False.
Methods:
Attributes:
-
arcticdem_dir
(pathlib.Path
) – -
batch_size
(int
) – -
binarization_threshold
(float
) – -
device
(typing.Literal['cuda', 'cpu', 'auto'] | int | None
) – -
ee_project
(str | None
) – -
ee_use_highvolume
(bool
) – -
export_bands
(list[str]
) – -
image_ids
(list
) – -
mask_erosion_size
(int
) – -
min_object_size
(int
) – -
model_files
(list[pathlib.Path]
) – -
output_data_dir
(pathlib.Path
) – -
overlap
(int
) – -
overwrite
(bool
) – -
patch_size
(int
) – -
quality_level
(int | typing.Literal['high_quality', 'low_quality', 'none']
) – -
reflection
(int
) – -
sentinel2_dir
(pathlib.Path
) – -
tcvis_dir
(pathlib.Path
) – -
tpi_inner_radius
(int
) – -
tpi_outer_radius
(int
) – -
write_model_outputs
(bool
) –
arcticdem_dir
class-attribute
instance-attribute
¶
device
class-attribute
instance-attribute
¶
export_bands
class-attribute
instance-attribute
¶
export_bands: list[str] = dataclasses.field(
default_factory=lambda: [
"probabilities",
"binarized",
"polygonized",
"extent",
"thumbnail",
]
)
output_data_dir
class-attribute
instance-attribute
¶
quality_level
class-attribute
instance-attribute
¶
sentinel2_dir
class-attribute
instance-attribute
¶
tcvis_dir
class-attribute
instance-attribute
¶
cli
staticmethod
¶
cli(
*,
pipeline: darts.pipelines.sequential_v2.Sentinel2Pipeline,
)
run
¶
Source code in darts/src/darts/pipelines/sequential_v2.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|