darts_acquisition¶
Acquisition of data from various sources for the DARTS dataset.
Functions:
-
download_admin_files
–Download the admin files for the regions.
-
load_arcticdem
–Load the ArcticDEM for the given geobox, fetch new data from the STAC server if necessary.
-
load_planet_masks
–Load the valid and quality data masks from a Planet scene.
-
load_planet_scene
–Load a PlanetScope satellite GeoTIFF file and return it as an xarray datset.
-
load_s2_from_gee
–Load a Sentinel 2 scene from Google Earth Engine and return it as an xarray dataset.
-
load_s2_from_stac
–Load a Sentinel 2 scene from the Copernicus STAC API and return it as an xarray dataset.
-
load_s2_masks
–Load the valid and quality data masks from a Sentinel 2 scene.
-
load_s2_scene
–Load a Sentinel 2 satellite GeoTIFF file and return it as an xarray datset.
-
load_tcvis
–Load the TCVIS for the given geobox, fetch new data from GEE if necessary.
-
parse_planet_type
–Parse the type of Planet data from the directory path.
-
parse_s2_tile_id
–Parse the Sentinel 2 tile ID from a file path.
Attributes:
download_admin_files
¶
Download the admin files for the regions.
Files will be stored under [admin_dir]/adm1.shp and [admin_dir]/adm2.shp.
Parameters:
Source code in darts-acquisition/src/darts_acquisition/admin.py
load_arcticdem
¶
load_arcticdem(
geobox: odc.geo.geobox.GeoBox,
data_dir: pathlib.Path | str,
resolution: darts_acquisition.arcticdem.RESOLUTIONS,
buffer: int = 0,
persist: bool = True,
) -> xarray.Dataset
Load the ArcticDEM for the given geobox, fetch new data from the STAC server if necessary.
Parameters:
-
geobox
(odc.geo.geobox.GeoBox
) –The geobox for which the tile should be loaded.
-
data_dir
(pathlib.Path | str
) –The directory where the ArcticDEM data is stored.
-
resolution
(typing.Literal[2, 10, 32]
) –The resolution of the ArcticDEM data in m.
-
buffer
(int
, default:0
) –The buffer around the projected (epsg:3413) geobox in pixels. Defaults to 0.
-
persist
(bool
, default:True
) –If the data should be persisted in memory. If not, this will return a Dask backed Dataset. Defaults to True.
Returns:
-
xarray.Dataset
–xr.Dataset: The ArcticDEM tile, with a buffer applied. Note: The buffer is applied in the arcticdem dataset's CRS, hence the orientation might be different. Final dataset is NOT matched to the reference CRS and resolution.
Warning
Geobox must be in a meter based CRS.
Usage
Since the API of the load_arcticdem
is based on GeoBox, one can load a specific ROI based on an existing Xarray DataArray:
import xarray as xr
import odc.geo.xr
from darts_aquisition import load_arcticdem
# Assume "optical" is an already loaded s2 based dataarray
arcticdem = load_arcticdem(
optical.odc.geobox,
"/path/to/arcticdem-parent-directory",
resolution=2,
buffer=ceil(self.tpi_outer_radius / 2 * sqrt(2))
)
# Now we can for example match the resolution and extent of the optical data:
arcticdem = arcticdem.odc.reproject(optical.odc.geobox, resampling="cubic")
The buffer
parameter is used to extend the region of interest by a certain amount of pixels.
This comes handy when calculating e.g. the Topographic Position Index (TPI), which requires a buffer around the region of interest to remove edge effects.
Raises:
-
ValueError
–If the resolution is not supported.
Source code in darts-acquisition/src/darts_acquisition/arcticdem.py
load_planet_masks
¶
Load the valid and quality data masks from a Planet scene.
Parameters:
Raises:
-
FileNotFoundError
–If no matching UDM-2 TIFF file is found in the specified path.
Returns:
-
xarray.Dataset
–xr.Dataset: A merged xarray Dataset containing two data masks: - 'valid_data_mask': A mask indicating valid (1) and no data (0). - 'quality_data_mask': A mask indicating high quality (1) and low quality (0).
Source code in darts-acquisition/src/darts_acquisition/planet.py
load_planet_scene
¶
Load a PlanetScope satellite GeoTIFF file and return it as an xarray datset.
Parameters:
-
fpath
(str | pathlib.Path
) –The path to the directory containing the TIFF files or a specific path to the TIFF file.
Returns:
Raises:
-
FileNotFoundError
–If no matching TIFF file is found in the specified path.
Source code in darts-acquisition/src/darts_acquisition/planet.py
load_s2_from_gee
¶
load_s2_from_gee(
img: str | ee.Image,
bands_mapping: dict = {
"B2": "blue",
"B3": "green",
"B4": "red",
"B8": "nir",
},
scale_and_offset: bool | tuple[float, float] = True,
cache: pathlib.Path | None = None,
) -> xarray.Dataset
Load a Sentinel 2 scene from Google Earth Engine and return it as an xarray dataset.
Parameters:
-
img
(str | ee.Image
) –The Sentinel 2 image ID or the ee image object.
-
bands_mapping
(dict[str, str]
, default:{'B2': 'blue', 'B3': 'green', 'B4': 'red', 'B8': 'nir'}
) –A mapping from bands to obtain. Will be renamed to the corresponding band names. Defaults to {"B2": "blue", "B3": "green", "B4": "red", "B8": "nir"}.
-
scale_and_offset
(bool | tuple[float, float]
, default:True
) –Whether to apply the scale and offset to the bands. If a tuple is provided, it will be used as the (
scale
,offset
) values withband * scale + offset
. If True, use the default values ofscale
= 0.0001 andoffset
= 0, taken from ee_extra. Defaults to True. -
cache
(pathlib.Path | None
, default:None
) –The path to the cache directory. If None, no caching will be done. Defaults to None.
Returns:
Source code in darts-acquisition/src/darts_acquisition/s2.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
load_s2_from_stac
¶
load_s2_from_stac(
s2id: str,
bands_mapping: dict = {
"B02_10m": "blue",
"B03_10m": "green",
"B04_10m": "red",
"B08_10m": "nir",
},
scale_and_offset: bool | tuple[float, float] = True,
cache: pathlib.Path | None = None,
) -> xarray.Dataset
Load a Sentinel 2 scene from the Copernicus STAC API and return it as an xarray dataset.
Parameters:
-
s2id
(str
) –The Sentinel 2 image ID.
-
bands_mapping
(dict[str, str]
, default:{'B02_10m': 'blue', 'B03_10m': 'green', 'B04_10m': 'red', 'B08_10m': 'nir'}
) –A mapping from bands to obtain. Will be renamed to the corresponding band names. Defaults to {"B2": "blue", "B3": "green", "B4": "red", "B8": "nir"}.
-
scale_and_offset
(bool | tuple[float, float]
, default:True
) –Whether to apply the scale and offset to the bands. If a tuple is provided, it will be used as the (
scale
,offset
) values withband * scale + offset
. If True, use the default values ofscale
= 0.0001 andoffset
= 0, taken from ee_extra. Defaults to True. -
cache
(pathlib.Path | None
, default:None
) –The path to the cache directory. If None, no caching will be done. Defaults to None.
Returns:
Source code in darts-acquisition/src/darts_acquisition/s2.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
load_s2_masks
¶
load_s2_masks(
fpath: str | pathlib.Path,
reference_geobox: odc.geo.geobox.GeoBox,
) -> xarray.Dataset
Load the valid and quality data masks from a Sentinel 2 scene.
Parameters:
-
fpath
(str | pathlib.Path
) –The path to the directory containing the TIFF files.
-
reference_geobox
(odc.geo.geobox.GeoBox
) –The reference geobox to reproject, resample and crop the masks data to.
Returns:
-
xarray.Dataset
–xr.Dataset: A merged xarray Dataset containing two data masks: - 'valid_data_mask': A mask indicating valid (1) and no data (0). - 'quality_data_mask': A mask indicating high quality (1) and low quality (0).
Source code in darts-acquisition/src/darts_acquisition/s2.py
load_s2_scene
¶
Load a Sentinel 2 satellite GeoTIFF file and return it as an xarray datset.
Parameters:
Returns:
Raises:
-
FileNotFoundError
–If no matching TIFF file is found in the specified path.
Source code in darts-acquisition/src/darts_acquisition/s2.py
load_tcvis
¶
load_tcvis(
geobox: odc.geo.geobox.GeoBox,
data_dir: pathlib.Path | str,
buffer: int = 0,
persist: bool = True,
) -> xarray.Dataset
Load the TCVIS for the given geobox, fetch new data from GEE if necessary.
Parameters:
-
geobox
(odc.geo.geobox.GeoBox
) –The geobox to load the data for.
-
data_dir
(pathlib.Path | str
) –The directory to store the downloaded data for faster access for consecutive calls.
-
buffer
(int
, default:0
) –The buffer around the geobox in pixels. Defaults to 0.
-
persist
(bool
, default:True
) –If the data should be persisted in memory. If not, this will return a Dask backed Dataset. Defaults to True.
Returns:
Usage
Since the API of the load_tcvis
is based on GeoBox, one can load a specific ROI based on an existing Xarray DataArray:
import xarray as xr
import odc.geo.xr
from darts_aquisition import load_tcvis
# Assume "optical" is an already loaded s2 based dataarray
tcvis = load_tcvis(
optical.odc.geobox,
"/path/to/tcvis-parent-directory",
)
# Now we can for example match the resolution and extent of the optical data:
tcvis = tcvis.odc.reproject(optical.odc.geobox, resampling="cubic")
Source code in darts-acquisition/src/darts_acquisition/tcvis.py
parse_planet_type
¶
Parse the type of Planet data from the directory path.
Parameters:
Returns:
Raises:
-
ValueError
–If the Planet data type cannot be parsed from the file path.
Source code in darts-acquisition/src/darts_acquisition/planet.py
parse_s2_tile_id
¶
Parse the Sentinel 2 tile ID from a file path.
Parameters:
Returns:
-
tuple[str, str, str]
–tuple[str, str, str]: A tuple containing the Planet crop ID, the Sentinel 2 tile ID and the combined tile ID.
Raises:
-
FileNotFoundError
–If no matching TIFF file is found in the specified path.