Calculate NDVI from an xarray Dataset containing spectral bands.
Example
ndvi_data = calculate_ndvi(planet_scene_dataset)
Parameters:
-
planet_scene_dataset
(xarray.Dataset
)
–
The xarray Dataset containing the spectral bands, where the bands are indexed
along a dimension (e.g., 'band'). The Dataset should have dimensions including 'band', 'y', and 'x'.
-
nir_band
(str
, default:
'nir'
)
–
The name of the NIR band in the Dataset (default is "nir"). This name should
correspond to the variable name for the NIR band in the 'band' dimension. Defaults to "nir".
-
red_band
(str
, default:
'red'
)
–
The name of the Red band in the Dataset (default is "red"). This name should
correspond to the variable name for the Red band in the 'band' dimension. Defaults to "red".
Returns:
-
xarray.Dataset
–
xr.Dataset: A new Dataset containing the calculated NDVI values. The resulting Dataset will have
dimensions (band: 1, y: ..., x: ...) and will be named "ndvi".
Notes
NDVI (Normalized Difference Vegetation Index) is calculated using the formula:
NDVI = (NIR - Red) / (NIR + Red)
This index is commonly used in remote sensing to assess vegetation health and density.
Source code in darts-preprocessing/src/darts_preprocessing/engineering/indices.py
| @stopuhr.funkuhr("Calculating NDVI", printer=logger.debug, print_kwargs=["nir_band", "red_band"])
def calculate_ndvi(planet_scene_dataset: xr.Dataset, nir_band: str = "nir", red_band: str = "red") -> xr.Dataset:
"""Calculate NDVI from an xarray Dataset containing spectral bands.
Example:
```python
ndvi_data = calculate_ndvi(planet_scene_dataset)
```
Args:
planet_scene_dataset (xr.Dataset): The xarray Dataset containing the spectral bands, where the bands are indexed
along a dimension (e.g., 'band'). The Dataset should have dimensions including 'band', 'y', and 'x'.
nir_band (str, optional): The name of the NIR band in the Dataset (default is "nir"). This name should
correspond to the variable name for the NIR band in the 'band' dimension. Defaults to "nir".
red_band (str, optional): The name of the Red band in the Dataset (default is "red"). This name should
correspond to the variable name for the Red band in the 'band' dimension. Defaults to "red".
Returns:
xr.Dataset: A new Dataset containing the calculated NDVI values. The resulting Dataset will have
dimensions (band: 1, y: ..., x: ...) and will be named "ndvi".
Notes:
NDVI (Normalized Difference Vegetation Index) is calculated using the formula:
NDVI = (NIR - Red) / (NIR + Red)
This index is commonly used in remote sensing to assess vegetation health and density.
"""
# Calculate NDVI using the formula
nir = planet_scene_dataset[nir_band].astype("float32")
r = planet_scene_dataset[red_band].astype("float32")
ndvi = (nir - r) / (nir + r)
# Scale to 0 - 20000 (for later conversion to uint16)
ndvi = (ndvi.clip(-1, 1) + 1) * 1e4
# Make nan to 0
ndvi = ndvi.fillna(0).rio.write_nodata(0)
# Convert to uint16
ndvi = ndvi.astype("uint16")
ndvi = ndvi.assign_attrs({"data_source": "planet", "long_name": "NDVI"}).to_dataset(name="ndvi")
return ndvi
|