darts_segmentation.metrics¶
Own metrics for segmentation tasks.
Classes:
-
BinaryBoundaryIoU
–Binary Boundary IoU metric for binary segmentation tasks.
-
BinaryInstanceAccuracy
–Binary instance accuracy metric.
-
BinaryInstanceAveragePrecision
–Compute the average precision for binary instance segmentation.
-
BinaryInstanceConfusionMatrix
–Binary instance confusion matrix metric.
-
BinaryInstanceF1Score
–Binary instance F1 score metric.
-
BinaryInstanceFBetaScore
–Binary instance F-beta score metric.
-
BinaryInstancePrecision
–Binary instance precision metric.
-
BinaryInstancePrecisionRecallCurve
–Compute the precision-recall curve for binary instance segmentation.
-
BinaryInstanceRecall
–Binary instance recall metric.
-
BinaryInstanceStatScores
–Base class for binary instance segmentation metrics.
BinaryBoundaryIoU
¶
BinaryBoundaryIoU(
dilation: float | int = 0.02,
threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Unpack[
darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoUKwargs
],
)
Bases: torchmetrics.Metric
Binary Boundary IoU metric for binary segmentation tasks.
This metric is similar to the Binary Intersection over Union (IoU or Jaccard Index) metric, but instead of comparing all pixels it only compares the boundaries of each foreground object.
Create a new instance of the BinaryBoundaryIoU metric.
Please see the torchmetrics docs for more info about the **kwargs.
Parameters:
-
dilation
(float | int
, default:0.02
) –The dilation (factor) / width of the boundary. Dilation in pixels if int, else ratio to calculate
dilation = dilation_ratio * image_diagonal
. Default: 0.02 -
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
**kwargs
(typing.Unpack[darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoUKwargs]
, default:{}
) –Additional keyword arguments for the metric.
Other Parameters:
-
zero_division
(int
) –Value to return when there is a zero division. Default is 0.
-
compute_on_cpu
(bool
) –If metric state should be stored on CPU during computations. Only works for list states.
-
dist_sync_on_step
(bool
) –If metric state should synchronize on
forward()
. Default isFalse
. -
process_group
(str
) –The process group on which the synchronization is called. Default is the world.
-
dist_sync_fn
(callable
) –Function that performs the allgather option on the metric state. Default is a custom implementation that calls
torch.distributed.all_gather
internally. -
distributed_available_fn
(callable
) –Function that checks if the distributed backend is available. Defaults to a check of
torch.distributed.is_available()
andtorch.distributed.is_initialized()
. -
sync_on_compute
(bool
) –If metric state should synchronize when
compute
is called. Default isTrue
. -
compute_with_cache
(bool
) –If results from
compute
should be cached. Default isTrue
.
Raises:
-
ValueError
–If dilation is not a float or int.
Methods:
Attributes:
-
dilation
– -
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
intersection
(torch.Tensor | list[torch.Tensor]
) – -
is_differentiable
(bool
) – -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
union
(torch.Tensor | list[torch.Tensor]
) – -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/boundary_iou.py
dilation
instance-attribute
¶
dilation = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
dilation
)
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
ignore_index
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
validate_args
)
compute
¶
Compute the metric.
Returns:
Source code in darts-segmentation/src/darts_segmentation/metrics/boundary_iou.py
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If the input arguments are invalid.
-
ValueError
–If the input shapes are invalid.
Source code in darts-segmentation/src/darts_segmentation/metrics/boundary_iou.py
BinaryInstanceAccuracy
¶
BinaryInstanceAccuracy(
threshold: float = 0.5,
matching_threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores
Binary instance accuracy metric.
Create a new instance of the BinaryInstanceStatScores metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
matching_threshold
is not a float in the [0,1] range.
Methods:
Attributes:
-
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstanceAveragePrecision
¶
BinaryInstanceAveragePrecision(
thresholds: int | list[float] | torch.Tensor = None,
matching_threshold: float = 0.5,
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve
Compute the average precision for binary instance segmentation.
Create a new instance of the BinaryInstancePrecisionRecallCurve metric.
Parameters:
-
thresholds
(int | list[float] | torch.Tensor
, default:None
) –The thresholds to use for the curve. Defaults to None.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If thresholds is None.
Methods:
Attributes:
-
confmat
(torch.Tensor
) – -
full_state_update
(bool
) – -
higher_is_better
(bool
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
preds
(list[torch.Tensor]
) – -
target
(list[torch.Tensor]
) – -
thesholds
(torch.Tensor
) – -
validate_args
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
matching_threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
validate_args
)
compute
¶
plot
¶
plot(
val: torch.Tensor
| collections.abc.Sequence[torch.Tensor]
| None = None,
ax: torchmetrics.utilities.plot._AX_TYPE | None = None,
) -> torchmetrics.utilities.plot._PLOT_OUT_TYPE
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
update
¶
Update metric states.
Parameters:
-
preds
(torch.Tensor
) –The predicted mask. Shape: (batch_size, height, width)
-
target
(torch.Tensor
) –The target mask. Shape: (batch_size, height, width)
Raises:
-
ValueError
–If preds and target have different shapes.
-
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
BinaryInstanceConfusionMatrix
¶
BinaryInstanceConfusionMatrix(
normalize: bool | None = None,
threshold: float = 0.5,
matching_threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores
Binary instance confusion matrix metric.
Create a new instance of the BinaryInstanceConfusionMatrix metric.
Parameters:
-
normalize
(bool
, default:None
) –If True, return the confusion matrix normalized by the number of instances. If False, return the confusion matrix without normalization. Defaults to None.
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
normalize
is not a bool.
Methods:
Attributes:
-
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
normalize
– -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
normalize
instance-attribute
¶
normalize = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceConfusionMatrix(
normalize
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
plot(
val: torch.Tensor | None = None,
ax: torchmetrics.utilities.plot._AX_TYPE | None = None,
add_text: bool = True,
labels: list[str] | None = None,
cmap: torchmetrics.utilities.plot._CMAP_TYPE
| None = None,
) -> torchmetrics.utilities.plot._PLOT_OUT_TYPE
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstanceF1Score
¶
BinaryInstanceF1Score(
threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore
Binary instance F1 score metric.
Create a new instance of the BinaryInstanceF1Score metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
zero_division
(float
, default:0
) –Value to return when there is a zero division. Defaults to 0.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Methods:
Attributes:
-
beta
– -
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
beta
instance-attribute
¶
beta = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
beta
)
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
validate_args
)
zero_division
instance-attribute
¶
zero_division = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
zero_division
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstanceFBetaScore
¶
BinaryInstanceFBetaScore(
beta: float,
threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
zero_division: float = 0,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores
Binary instance F-beta score metric.
Create a new instance of the BinaryInstanceFBetaScore metric.
Parameters:
-
beta
(float
) –The beta parameter for the F-beta score.
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
zero_division
(float
, default:0
) –Value to return when there is a zero division. Defaults to 0.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Methods:
Attributes:
-
beta
– -
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
beta
instance-attribute
¶
beta = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
beta
)
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
validate_args
)
zero_division
instance-attribute
¶
zero_division = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceFBetaScore(
zero_division
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstancePrecision
¶
BinaryInstancePrecision(
threshold: float = 0.5,
matching_threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores
Binary instance precision metric.
Create a new instance of the BinaryInstanceStatScores metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
matching_threshold
is not a float in the [0,1] range.
Methods:
Attributes:
-
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstancePrecisionRecallCurve
¶
BinaryInstancePrecisionRecallCurve(
thresholds: int | list[float] | torch.Tensor = None,
matching_threshold: float = 0.5,
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: torchmetrics.Metric
Compute the precision-recall curve for binary instance segmentation.
This metric works similar to torchmetrics.classification.PrecisionRecallCurve
, with two key differences:
1. It calculates the tp, fp, fn values for each instance (blob) in the batch, and then aggregates them.
Instead of calculating the values for each pixel.
2. The "thresholds" argument is required.
Calculating the thresholds at the compute stage would cost to much memory for this usecase.
Create a new instance of the BinaryInstancePrecisionRecallCurve metric.
Parameters:
-
thresholds
(int | list[float] | torch.Tensor
, default:None
) –The thresholds to use for the curve. Defaults to None.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If thresholds is None.
Methods:
Attributes:
-
confmat
(torch.Tensor
) – -
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
preds
(list[torch.Tensor]
) – -
target
(list[torch.Tensor]
) – -
thesholds
(torch.Tensor
) – -
validate_args
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
matching_threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
validate_args
)
compute
¶
plot
¶
plot(
curve: tuple[torch.Tensor, torch.Tensor, torch.Tensor]
| None = None,
score: torch.Tensor | bool | None = None,
ax: torchmetrics.utilities.plot._AX_TYPE | None = None,
) -> torchmetrics.utilities.plot._PLOT_OUT_TYPE
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
update
¶
Update metric states.
Parameters:
-
preds
(torch.Tensor
) –The predicted mask. Shape: (batch_size, height, width)
-
target
(torch.Tensor
) –The target mask. Shape: (batch_size, height, width)
Raises:
-
ValueError
–If preds and target have different shapes.
-
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
BinaryInstanceRecall
¶
BinaryInstanceRecall(
threshold: float = 0.5,
matching_threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores
Binary instance recall metric.
Create a new instance of the BinaryInstanceStatScores metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
matching_threshold
is not a float in the [0,1] range.
Methods:
Attributes:
-
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
plot_lower_bound
(float
) – -
plot_upper_bound
(float
) – -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
plot
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
BinaryInstanceStatScores
¶
BinaryInstanceStatScores(
threshold: float = 0.5,
matching_threshold: float = 0.5,
multidim_average: typing.Literal[
"global", "samplewise"
] = "global",
ignore_index: int | None = None,
validate_args: bool = True,
**kwargs: typing.Any,
)
Bases: torchmetrics.classification.stat_scores._AbstractStatScores
Base class for binary instance segmentation metrics.
Create a new instance of the BinaryInstanceStatScores metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
matching_threshold
is not a float in the [0,1] range.
Methods:
Attributes:
-
full_state_update
(bool
) – -
higher_is_better
(bool | None
) – -
ignore_index
– -
is_differentiable
(bool
) – -
matching_threshold
– -
multidim_average
– -
threshold
– -
validate_args
– -
zero_division
–
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.