darts_segmentation.metrics.BinaryBoundaryIoU¶
Bases: torchmetrics.Metric
Binary Boundary IoU metric for binary segmentation tasks.
This metric is similar to the Binary Intersection over Union (IoU or Jaccard Index) metric, but instead of comparing all pixels it only compares the boundaries of each foreground object.
Create a new instance of the BinaryBoundaryIoU metric.
Please see the torchmetrics docs for more info about the **kwargs.
Parameters:
-
dilation
(float | int
, default:0.02
) –The dilation (factor) / width of the boundary. Dilation in pixels if int, else ratio to calculate
dilation = dilation_ratio * image_diagonal
. Default: 0.02 -
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
**kwargs
(typing.Unpack[darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoUKwargs]
, default:{}
) –Additional keyword arguments for the metric.
Other Parameters:
-
zero_division
(int
) –Value to return when there is a zero division. Default is 0.
-
compute_on_cpu
(bool
) –If metric state should be stored on CPU during computations. Only works for list states.
-
dist_sync_on_step
(bool
) –If metric state should synchronize on
forward()
. Default isFalse
. -
process_group
(str
) –The process group on which the synchronization is called. Default is the world.
-
dist_sync_fn
(callable
) –Function that performs the allgather option on the metric state. Default is a custom implementation that calls
torch.distributed.all_gather
internally. -
distributed_available_fn
(callable
) –Function that checks if the distributed backend is available. Defaults to a check of
torch.distributed.is_available()
andtorch.distributed.is_initialized()
. -
sync_on_compute
(bool
) –If metric state should synchronize when
compute
is called. Default isTrue
. -
compute_with_cache
(bool
) –If results from
compute
should be cached. Default isTrue
.
Raises:
-
ValueError
–If dilation is not a float or int.
Source code in darts-segmentation/src/darts_segmentation/metrics/boundary_iou.py
dilation
instance-attribute
¶
dilation = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
dilation
)
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
ignore_index
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.boundary_iou.BinaryBoundaryIoU(
validate_args
)
compute
¶
Compute the metric.
Returns:
Source code in darts-segmentation/src/darts_segmentation/metrics/boundary_iou.py
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If the input arguments are invalid.
-
ValueError
–If the input shapes are invalid.