darts_segmentation.metrics.BinaryInstanceAveragePrecision¶
Bases: darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve
Compute the average precision for binary instance segmentation.
Create a new instance of the BinaryInstancePrecisionRecallCurve metric.
Parameters:
-
thresholds
(int | list[float] | torch.Tensor
, default:None
) –The thresholds to use for the curve. Defaults to None.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If thresholds is None.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
matching_threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_prc.BinaryInstancePrecisionRecallCurve(
validate_args
)
compute
¶
plot
¶
plot(
val: torch.Tensor
| collections.abc.Sequence[torch.Tensor]
| None = None,
ax: torchmetrics.utilities.plot._AX_TYPE | None = None,
) -> torchmetrics.utilities.plot._PLOT_OUT_TYPE
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_prc.py
update
¶
Update metric states.
Parameters:
-
preds
(torch.Tensor
) –The predicted mask. Shape: (batch_size, height, width)
-
target
(torch.Tensor
) –The target mask. Shape: (batch_size, height, width)
Raises:
-
ValueError
–If preds and target have different shapes.
-
ValueError
–If the input targets are not binary masks.