darts_segmentation.metrics.BinaryInstanceStatScores¶
Bases: torchmetrics.classification.stat_scores._AbstractStatScores
Base class for binary instance segmentation metrics.
Create a new instance of the BinaryInstanceStatScores metric.
Parameters:
-
threshold
(float
, default:0.5
) –Threshold for binarizing the prediction. Has no effect if the prediction is already binarized. Defaults to 0.5.
-
matching_threshold
(float
, default:0.5
) –The threshold for matching instances. Defaults to 0.5.
-
multidim_average
(typing.Literal['global', 'samplewise']
, default:'global'
) –How the average over multiple batches is calculated. Defaults to "global".
-
ignore_index
(int | None
, default:None
) –Ignores an invalid class. Defaults to None.
-
validate_args
(bool
, default:True
) –Weather to validate inputs. Defaults to True.
-
kwargs
(typing.Any
, default:{}
) –Additional arguments for the Metric class, regarding compute-methods. Please refer to torchmetrics for more examples.
Raises:
-
ValueError
–If
matching_threshold
is not a float in the [0,1] range.
Source code in darts-segmentation/src/darts_segmentation/metrics/binary_instance_stat_scores.py
ignore_index
instance-attribute
¶
ignore_index = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
ignore_index
)
matching_threshold
instance-attribute
¶
matching_threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
matching_threshold
)
multidim_average
instance-attribute
¶
multidim_average = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
multidim_average
)
threshold
instance-attribute
¶
threshold = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
threshold
)
validate_args
instance-attribute
¶
validate_args = darts_segmentation.metrics.binary_instance_stat_scores.BinaryInstanceStatScores(
validate_args
)
compute
¶
update
¶
Update the metric state.
If the predictions are logits (not between 0 and 1), they are converted to probabilities using a sigmoid and then binarized using the threshold. If the predictions are probabilities, they are binarized using the threshold.
Parameters:
-
preds
(torch.Tensor
) –Predictions from model (logits or probabilities).
-
target
(torch.Tensor
) –Ground truth labels.
Raises:
-
ValueError
–If
preds
andtarget
have different shapes. -
ValueError
–If the input targets are not binary masks.