darts_segmentation.training
darts_segmentation.training
¶
Training related functions and classes for Image Segmentation.
convert_lightning_checkpoint
¶
convert_lightning_checkpoint(
*,
lightning_checkpoint: pathlib.Path,
out_directory: pathlib.Path,
checkpoint_name: str,
framework: str = "smp",
)
Convert a lightning checkpoint to our own format.
The final checkpoint will contain the model configuration and the state dict. It will be saved to:
Parameters:
-
lightning_checkpoint
(pathlib.Path
) –Path to the lightning checkpoint.
-
out_directory
(pathlib.Path
) –Output directory for the converted checkpoint.
-
checkpoint_name
(str
) –A unique name of the new checkpoint.
-
framework
(str
, default:'smp'
) –The framework used for the model. Defaults to "smp".
Source code in darts-segmentation/src/darts_segmentation/training/train.py
cross_validation_smp
¶
cross_validation_smp(
*,
name: str | None = None,
tune_name: str | None = None,
cv: darts_segmentation.training.cv.CrossValidationConfig = darts_segmentation.training.cv.CrossValidationConfig(),
training_config: darts_segmentation.training.train.TrainingConfig = darts_segmentation.training.train.TrainingConfig(),
data_config: darts_segmentation.training.train.DataConfig = darts_segmentation.training.train.DataConfig(),
device_config: darts_segmentation.training.train.DeviceConfig = darts_segmentation.training.train.DeviceConfig(),
hparams: darts_segmentation.training.hparams.Hyperparameters = darts_segmentation.training.hparams.Hyperparameters(),
logging_config: darts_segmentation.training.train.LoggingConfig = darts_segmentation.training.train.LoggingConfig(),
)
Perform cross-validation for a model with given hyperparameters.
Please see https://smp.readthedocs.io/en/latest/index.html for model configurations of architecture and encoder.
Please also consider reading our training guide (docs/guides/training.md).
This cross-validation function is designed to evaluate the performance of a single model configuration. It can be used by a tuning script to tune hyperparameters. It calls the training function, hence most functionality is the same as the training function. In general, it does perform this:
and calculates a score from the results.
To specify on which metric(s) the score is calculated, the scoring_metric
parameter can be specified.
Each score can be provided by either ":higher" or ":lower" to indicate the direction of the metrics.
This allows to correctly combine multiple metrics by doing 1/metric before calculation if a metric is ":lower".
If no direction is provided, it is assumed to be ":higher".
Has no real effect on the single score calculation, since only the mean is calculated there.
In a multi-score setting, the score is calculated by combine-then-reduce the metrics. Meaning that first for each fold the metrics are combined using the specified strategy, and then the results are reduced via mean. Please refer to the documentation to understand the different multi-score strategies.
If one of the metrics of any of the runs contains NaN, Inf, -Inf or is 0 the score is reported to be "unstable".
Artifacts are stored under {artifact_dir}/{tune_name}
for tunes (meaning if tune_name
is not None)
else {artifact_dir}/_cross_validation
.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- early_stopping_patience
specifies how many epochs to wait for improvement before stopping.
In epochs, this would be check_val_every_n_epoch * early_stopping_patience
.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
Example: There are 400 training samples and the batch size is 2, resulting in 200 training steps per epoch.
If log_every_n_steps
is set to 50 then the training logs and metrics will be logged 4 times per epoch.
If check_val_every_n_epoch
is set to 5 then validation will be performed every 5 epochs.
If plot_every_n_val_epochs
is set to 2 then validation samples will be plotted every 10 epochs.
If early_stopping_patience
is set to 3 then early stopping will be performed after 15 epochs without improvement.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── data.zarr/ # this zarr group contains the dataarrays x and y
├── metadata.parquet # this contains information necessary to split the data into train, val, and test sets.
└── labels.geojson
Parameters:
-
name
(str | None
, default:None
) –Name of the cross-validation. If None, a name is generated automatically. Defaults to None.
-
tune_name
(str | None
, default:None
) –Name of the tuning. Should only be specified by a tuning script. Defaults to None.
-
cv
(darts_segmentation.training.cv.CrossValidationConfig
, default:darts_segmentation.training.cv.CrossValidationConfig()
) –Configuration for cross-validation.
-
training_config
(darts_segmentation.training.train.TrainingConfig
, default:darts_segmentation.training.train.TrainingConfig()
) –Configuration for the training.
-
data_config
(darts_segmentation.training.train.DataConfig
, default:darts_segmentation.training.train.DataConfig()
) –Configuration for the data.
-
device_config
(darts_segmentation.training.train.DeviceConfig
, default:darts_segmentation.training.train.DeviceConfig()
) –Configuration for the devices to use.
-
hparams
(darts_segmentation.training.hparams.Hyperparameters
, default:darts_segmentation.training.hparams.Hyperparameters()
) –Hyperparameters for the training.
-
logging_config
(darts_segmentation.training.train.LoggingConfig
, default:darts_segmentation.training.train.LoggingConfig()
) –Logging configuration.
Returns:
-
–
tuple[float, bool, pd.DataFrame]: A single score, a boolean indicating if the score is unstable, and a DataFrame containing run info (seed, fold, metrics, duration, checkpoint)
Raises:
-
ValueError
–If no runs were performed, meaning the configuration is invalid or no data was found.
Source code in darts-segmentation/src/darts_segmentation/training/cv.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
|
test_smp
¶
test_smp(
*,
train_data_dir: pathlib.Path,
run_id: str,
run_name: str,
model_ckp: pathlib.Path | None = None,
batch_size: int = 8,
data_split_method: typing.Literal[
"random", "region", "sample"
]
| None = None,
data_split_by: list[str] | str | float | None = None,
bands: list[str] | None = None,
artifact_dir: pathlib.Path = pathlib.Path("artifacts"),
num_workers: int = 0,
device_config: darts_segmentation.training.train.DeviceConfig = darts_segmentation.training.train.DeviceConfig(),
wandb_entity: str | None = None,
wandb_project: str | None = None,
) -> pytorch_lightning.Trainer
Run the testing of the SMP model.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── data.zarr/ # this zarr group contains the dataarrays x and y
├── metadata.parquet # this contains information necessary to split the data into train, val, and test sets.
└── labels.geojson
Parameters:
-
train_data_dir
(pathlib.Path
) –The path (top-level) to the data to be used for training. Expects a directory containing: 1. a zarr group called "data.zarr" containing a "x" and "y" array 2. a geoparquet file called "metadata.parquet" containing the metadata for the data. This metadata should contain at least the following columns: - "sample_id": The id of the sample - "region": The region the sample belongs to - "empty": Whether the image is empty The index should refer to the index of the sample in the zarr data. This directory should be created by a preprocessing script.
-
run_id
(str
) –ID of the run.
-
run_name
(str
) –Name of the run.
-
model_ckp
(pathlib.Path | None
, default:None
) –Path to the model checkpoint. If None, try to find the latest checkpoint in
artifact_dir / run_name / run_id / checkpoints
. Defaults to None. -
batch_size
(int
, default:8
) –Batch size for training and validation.
-
data_split_method
(typing.Literal['random', 'region', 'sample'] | None
, default:None
) –The method to use for splitting the data into a train and a test set. "random" will split the data randomly, the seed is always 42 and the size of the test set can be specified by providing a float between 0 and 1 to data_split_by. "region" will split the data by one or multiple regions, which can be specified by providing a str or list of str to data_split_by. "sample" will split the data by sample ids, which can also be specified similar to "region". If None, no split is done and the complete dataset is used for both training and testing. The train split will further be split in the cross validation process. Defaults to None.
-
data_split_by
(list[str] | str | float | None
, default:None
) –Select by which seed/regions/samples split. Defaults to None.
-
bands
(list[str] | None
, default:None
) –List of bands to use. Defaults to None.
-
artifact_dir
(pathlib.Path
, default:pathlib.Path('artifacts')
) –Directory to save artifacts. Defaults to Path("lightning_logs").
-
num_workers
(int
, default:0
) –Number of workers for the DataLoader. Defaults to 0.
-
device_config
(darts_segmentation.training.train.DeviceConfig
, default:darts_segmentation.training.train.DeviceConfig()
) –Device and distributed strategy related parameters.
-
wandb_entity
(str | None
, default:None
) –WandB entity. Defaults to None.
-
wandb_project
(str | None
, default:None
) –WandB project. Defaults to None.
Returns:
-
Trainer
(pytorch_lightning.Trainer
) –The trainer object used for training.
Source code in darts-segmentation/src/darts_segmentation/training/train.py
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
|
train_smp
¶
train_smp(
*,
run: darts_segmentation.training.train.TrainRunConfig = darts_segmentation.training.train.TrainRunConfig(),
training_config: darts_segmentation.training.train.TrainingConfig = darts_segmentation.training.train.TrainingConfig(),
data_config: darts_segmentation.training.train.DataConfig = darts_segmentation.training.train.DataConfig(),
logging_config: darts_segmentation.training.train.LoggingConfig = darts_segmentation.training.train.LoggingConfig(),
device_config: darts_segmentation.training.train.DeviceConfig = darts_segmentation.training.train.DeviceConfig(),
hparams: darts_segmentation.training.hparams.Hyperparameters = darts_segmentation.training.hparams.Hyperparameters(),
)
Run the training of the SMP model, specifically binary segmentation.
Please see https://smp.readthedocs.io/en/latest/index.html for model configurations of architecture and encoder.
Please also consider reading our training guide (docs/guides/training.md).
This training function is meant for single training runs but is also used for cross-validation and hyperparameter tuning by cv.py and tune.py. This strongly affects where artifacts are stored:
- Run was created by a tune:
{artifact_dir}/{tune_name}/{cv_name}/{run_name}-{run_id}
- Run was created by a cross-validation:
{artifact_dir}/_cross_validations/{cv_name}/{run_name}-{run_id}
- Single runs:
{artifact_dir}/_runs/{run_name}-{run_id}
run_name
can be specified by the user, else it is generated automatically.
In case of cross-validation, the run name is generated automatically by the cross-validation.
run_id
is generated automatically by the training function.
Both are saved to the final checkpoint.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- early_stopping_patience
specifies how many epochs to wait for improvement before stopping.
In epochs, this would be check_val_every_n_epoch * early_stopping_patience
.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
Example: There are 400 training samples and the batch size is 2, resulting in 200 training steps per epoch.
If log_every_n_steps
is set to 50 then the training logs and metrics will be logged 4 times per epoch.
If check_val_every_n_epoch
is set to 5 then validation will be performed every 5 epochs.
If plot_every_n_val_epochs
is set to 2 then validation samples will be plotted every 10 epochs.
If early_stopping_patience
is set to 3 then early stopping will be performed after 15 epochs without improvement.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── data.zarr/ # this zarr group contains the dataarrays x and y
├── metadata.parquet # this contains information necessary to split the data into train, val, and test sets.
└── labels.geojson
Parameters:
-
data_config
(darts_segmentation.training.train.DataConfig
, default:darts_segmentation.training.train.DataConfig()
) –Data related parameters for training.
-
run
(darts_segmentation.training.train.TrainRunConfig
, default:darts_segmentation.training.train.TrainRunConfig()
) –Run related parameters for training.
-
logging_config
(darts_segmentation.training.train.LoggingConfig
, default:darts_segmentation.training.train.LoggingConfig()
) –Logging related parameters for training.
-
device_config
(darts_segmentation.training.train.DeviceConfig
, default:darts_segmentation.training.train.DeviceConfig()
) –Device and distributed strategy related parameters.
-
training_config
(darts_segmentation.training.train.TrainingConfig
, default:darts_segmentation.training.train.TrainingConfig()
) –Training related parameters for training.
-
hparams
(darts_segmentation.training.hparams.Hyperparameters
, default:darts_segmentation.training.hparams.Hyperparameters()
) –Hyperparameters for the model.
Returns:
-
–
pl.Trainer: The trainer object used for training. Contains also metrics.
Source code in darts-segmentation/src/darts_segmentation/training/train.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
tune_smp
¶
tune_smp(
*,
name: str | None = None,
n_trials: int | typing.Literal["grid"] = 100,
retrain_and_test: bool = False,
cv_config: darts_segmentation.training.cv.CrossValidationConfig = darts_segmentation.training.cv.CrossValidationConfig(),
training_config: darts_segmentation.training.train.TrainingConfig = darts_segmentation.training.train.TrainingConfig(),
data_config: darts_segmentation.training.train.DataConfig = darts_segmentation.training.train.DataConfig(),
device_config: darts_segmentation.training.train.DeviceConfig = darts_segmentation.training.train.DeviceConfig(),
logging_config: darts_segmentation.training.train.LoggingConfig = darts_segmentation.training.train.LoggingConfig(),
hpconfig: pathlib.Path | None = None,
config_file: pathlib.Path | None = None,
)
Tune the hyper-parameters of the model using cross-validation and random states.
Please see https://smp.readthedocs.io/en/latest/index.html for model configurations of architecture and encoder.
Please also consider reading our training guide (docs/guides/training.md).
This tuning script is designed to sweep over hyperparameters with a cross-validation
used to evaluate each hyperparameter configuration.
Optionally, by setting retrain_and_test
to True, the best hyperparameters are then selected based on the
cross-validation scores and a new model is trained on the entire train-split and tested on the test-split.
Hyperparameters can be configured using a hpconfig
file (YAML or Toml).
Please consult the training guide or the documentation of
darts_segmentation.training.hparams.parse_hyperparameters
to learn how such a file should be structured.
Per default, a random search is performed, where the number of samples can be specified by n_trials
.
If n_trials
is set to "grid", a grid search is performed instead.
However, this expects to be every hyperparameter to be configured as either constant value or a choice / list.
To specify on which metric(s) the cv score is calculated, the scoring_metric
parameter can be specified.
Each score can be provided by either ":higher" or ":lower" to indicate the direction of the metrics.
This allows to correctly combine multiple metrics by doing 1/metric before calculation if a metric is ":lower".
If no direction is provided, it is assumed to be ":higher".
Has no real effect on the single score calculation, since only the mean is calculated there.
In a multi-score setting, the score is calculated by combine-then-reduce the metrics. Meaning that first for each fold the metrics are combined using the specified strategy, and then the results are reduced via mean. Please refer to the documentation to understand the different multi-score strategies.
If one of the metrics of any of the runs contains NaN, Inf, -Inf or is 0 the score is reported to be "unstable". In such cases, the configuration is not considered for further evaluation.
Artifacts are stored under {artifact_dir}/{tune_name}
.
You can specify the frequency on how often logs will be written and validation will be performed.
- log_every_n_steps
specifies how often train-logs will be written. This does not affect validation.
- check_val_every_n_epoch
specifies how often validation will be performed.
This will also affect early stopping.
- early_stopping_patience
specifies how many epochs to wait for improvement before stopping.
In epochs, this would be check_val_every_n_epoch * early_stopping_patience
.
- plot_every_n_val_epochs
specifies how often validation samples will be plotted.
Since plotting is quite costly, you can reduce the frequency. Works similar like early stopping.
In epochs, this would be check_val_every_n_epoch * plot_every_n_val_epochs
.
Example: There are 400 training samples and the batch size is 2, resulting in 200 training steps per epoch.
If log_every_n_steps
is set to 50 then the training logs and metrics will be logged 4 times per epoch.
If check_val_every_n_epoch
is set to 5 then validation will be performed every 5 epochs.
If plot_every_n_val_epochs
is set to 2 then validation samples will be plotted every 10 epochs.
If early_stopping_patience
is set to 3 then early stopping will be performed after 15 epochs without improvement.
The data structure of the training data expects the "preprocessing" step to be done beforehand, which results in the following data structure:
preprocessed-data/ # the top-level directory
├── config.toml
├── data.zarr/ # this zarr group contains the dataarrays x and y
├── metadata.parquet # this contains information necessary to split the data into train, val, and test sets.
└── labels.geojson
Parameters:
-
name
(str | None
, default:None
) –Name of the tuning run. Will be generated based on the number of existing directories in the artifact directory if None. Defaults to None.
-
n_trials
(int | typing.Literal['grid']
, default:100
) –Number of trials to perform in hyperparameter tuning. If "grid", span a grid search over all configured hyperparameters. In a grid search, only constant or choice hyperparameters are allowed. Defaults to 100.
-
retrain_and_test
(bool
, default:False
) –Whether to retrain the model with the best hyperparameters and test it. Defaults to False.
-
cv_config
(darts_segmentation.training.cv.CrossValidationConfig
, default:darts_segmentation.training.cv.CrossValidationConfig()
) –Configuration for cross-validation. Defaults to CrossValidationConfig().
-
training_config
(darts_segmentation.training.train.TrainingConfig
, default:darts_segmentation.training.train.TrainingConfig()
) –Configuration for training. Defaults to TrainingConfig().
-
data_config
(darts_segmentation.training.train.DataConfig
, default:darts_segmentation.training.train.DataConfig()
) –Configuration for data. Defaults to DataConfig().
-
device_config
(darts_segmentation.training.train.DeviceConfig
, default:darts_segmentation.training.train.DeviceConfig()
) –Configuration for device. Defaults to DeviceConfig().
-
logging_config
(darts_segmentation.training.train.LoggingConfig
, default:darts_segmentation.training.train.LoggingConfig()
) –Configuration for logging. Defaults to LoggingConfig().
-
hpconfig
(pathlib.Path | None
, default:None
) –Path to the hyperparameter configuration file. Please see the documentation of
hyperparameters
for more information. Defaults to None. -
config_file
(pathlib.Path | None
, default:None
) –Path to the configuration file. If provided, it will be used instead of
hpconfig
ifhpconfig
is None. Defaults to None.
Returns:
-
–
tuple[float, pd.DataFrame]: The best score (if retrained and tested) and the run infos of all runs.
Raises:
-
ValueError
–If no hyperparameter configuration file is provided.
Source code in darts-segmentation/src/darts_segmentation/training/tune.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|