Load the TCVIS for the given geobox, fetch new data from GEE if necessary.
Parameters:
-
geobox
(odc.geo.geobox.GeoBox
)
–
The geobox to load the data for.
-
data_dir
(pathlib.Path | str
)
–
The directory to store the downloaded data for faster access for consecutive calls.
-
buffer
(int
, default:
0
)
–
The buffer around the geobox in pixels. Defaults to 0.
-
persist
(bool
, default:
True
)
–
If the data should be persisted in memory.
If not, this will return a Dask backed Dataset. Defaults to True.
Returns:
Usage
Since the API of the load_tcvis
is based on GeoBox, one can load a specific ROI based on an existing Xarray DataArray:
import xarray as xr
import odc.geo.xr
from darts_aquisition import load_tcvis
# Assume "optical" is an already loaded s2 based dataarray
tcvis = load_tcvis(
optical.odc.geobox,
"/path/to/tcvis-parent-directory",
)
# Now we can for example match the resolution and extent of the optical data:
tcvis = tcvis.odc.reproject(optical.odc.geobox, resampling="cubic")
Source code in darts-acquisition/src/darts_acquisition/tcvis.py
| @stopuhr.funkuhr("Loading TCVIS", printer=logger.debug, print_kwargs=True)
def load_tcvis(
geobox: GeoBox,
data_dir: Path | str,
buffer: int = 0,
persist: bool = True,
) -> xr.Dataset:
"""Load the TCVIS for the given geobox, fetch new data from GEE if necessary.
Args:
geobox (GeoBox): The geobox to load the data for.
data_dir (Path | str): The directory to store the downloaded data for faster access for consecutive calls.
buffer (int, optional): The buffer around the geobox in pixels. Defaults to 0.
persist (bool, optional): If the data should be persisted in memory.
If not, this will return a Dask backed Dataset. Defaults to True.
Returns:
xr.Dataset: The TCVIS dataset.
Usage:
Since the API of the `load_tcvis` is based on GeoBox, one can load a specific ROI based on an existing Xarray DataArray:
```python
import xarray as xr
import odc.geo.xr
from darts_aquisition import load_tcvis
# Assume "optical" is an already loaded s2 based dataarray
tcvis = load_tcvis(
optical.odc.geobox,
"/path/to/tcvis-parent-directory",
)
# Now we can for example match the resolution and extent of the optical data:
tcvis = tcvis.odc.reproject(optical.odc.geobox, resampling="cubic")
```
""" # noqa: E501
accessor = smart_geocubes.TCTrend(data_dir, create_icechunk_storage=False)
# We want to assume that the datacube is already created to be save in a multi-process environment
accessor.assert_created()
tcvis = accessor.load(geobox, buffer=buffer, persist=persist)
# Rename to follow our conventions
tcvis = tcvis.rename_vars(
{
"TCB_slope": "tc_brightness",
"TCG_slope": "tc_greenness",
"TCW_slope": "tc_wetness",
}
)
return tcvis
|